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Abstract 
Immunometabolism examines the links between immune cell function and their 

metabolism. Advances in liquid chromatography mass spectrometry (LC-MS) 

technologies have uncovered unique insights into cellular metabolomics. 

Dysregulation of immune cell metabolism is now an established feature of many 

autoimmune diseases. One such condition is anti-neutrophil cytoplasmic antibody 

(ANCA) associated vasculitis (AAV), where monocyte metabolism is disrupted 

following ANCA stimulation leading to pathogenic inflammation. In this thesis I have 

optimised LC-MS methods for metabolomic profiling of primary monocytes, and 

investigated the role of metabolism in response to ANCA stimulation. 

 

I first defined optimum cell culture conditions and experimental protocols for ANCA 

stimulation of primary monocytes. I then investigated ways to better combine 

immunologic and metabolic readouts in these cells. Flow cytometry, histology, 

ELISA, RT-qPCR, and western blots can all be completed in a single four-hour 

stimulation experiment alongside the core LC-MS analysis, but Seahorse 

investigations must be completed in parallel. Pilot investigations also uncovered 

changes in ANCA antigen expression with age and links to amino acid production 

via glycolysis. 

 

Next, I optimised sample preparation and LC-MS conditions for metabolomic 

profiling of these cells. A methanol-based metabolite extraction protocol was 

deemed most appropriate, and a Hydrophilic Interaction Liquid Chromatography 

(HILIC) LC-MS method provided excellent coverage of the monocyte metabolome. 

The analysis pipeline requires sample normalisation to account for technical and 

biological variation. I have validated measurement of the residual protein content of 

the metabolite fraction as a means of normalising primary cellular metabolomic data, 

and have optimised a commercial assay protocol for this purpose. 

 

Finally, these optimised experiments were completed in a cohort of healthy donor 

monocytes stimulated with ANCA. Alterations in several amino acids and several 

lipid species were discovered, with a greater effect seen in cells activated with anti-

myeloperoxidase (MPO). Increases in several metabolites also appear to be linked 

to ANCA antigen expression. While the changes in cellular metabolism at this early 

(4 hour) timepoint are subtle, they do suggest a link between metabolic activation 

and upregulation of inflammatory responses. 

 

These data implicate changes in monocyte metabolism in the pathogenesis of AAV. 

This hypothesis-generating work should be further validated to determine the 

specific role of these metabolites in ANCA-induced inflammation. These metabolic 

pathways may also hold potential as therapeutic targets for AAV. 
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Chapter 1: Introduction  



   
 
 

 
 

21 

1.1 Immunometabolism 
Immunometabolism is a burgeoning field which examines the links between immune 

cell function and metabolism. Metabolic pathways and immunologic functions are 

now recognised as a complex concatenation of processes with distinct outputs 

based on context. Cellular metabolism is the process by which cells generate energy 

in the form of adenosine triphosphate (ATP)[3]. There are two primary pathways 

used by cells to generate ATP: the glycolytic pathway (glycolysis) and oxidative 

phosphorylation (OXPHOS). These pathways are linked by the production of 

pyruvate, produced via pyruvate kinase during the final step of glycolysis. Pyruvate 

then moves from the cytoplasm into the mitochondrion where it is converted to 

acetyl-CoA to feed the tricarboxylic acid (TCA) cycle (a.k.a. Krebs cycle). A 

summary of the major metabolic pathways in human cells and some of their 

interconnections is shown in Figure 1.1.1. 

 

Glucose is the primary fuel used by immune cells to produce energy. Glycolysis – 

the breakdown of glucose – is a fundamental metabolic process for energy 

generation in the human body. Glycolytic intermediates can be hijacked to feed 

other metabolic pathways. The pentose phosphate pathway (PPP), tricarboxylic 

acid (TCA) cycle, and lipid synthesis pathways can all be fuelled by branches of 

glycolysis [3]. The field of immunometabolism was initially born from the discovery 

that cancer cells primarily produce ATP via glycolysis [4]. Despite this pathway 

yielding significantly less ATP than OXPHOS, glycolysis produces ATP at a much 

faster rate [5, 6]. Glycolysis supports these cells’ need for rapid proliferation in a 

process called the “Warburg effect” [4]. A similar phenomenon has also been 

demonstrated in immune cells. In general, quiescent immune cells transfer pyruvate 

generated from glycolysis into the TCA to meet their low energy demands. Upon 

activation these cells require much more energy to carry out their varied functions, 

and generally favour glycolysis.  

 

Immunometabolism provides deeper phenotypic profiling of the influence of specific 

immune cell types in health and disease. Modern immunometabolism was born from 

discoveries linking succinate accumulation to interleukin (IL)-1β [7, 8] in 

macrophages. Monocytes extravasate and differentiate into macrophages (or 
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dendritic cells [DCs]) in tissues where they adopt a specific functional niche 

determined by microenvironmental signals. Macrophages play diverse functional 

roles depending on their phenotype, compartment, and origin, but can be broadly 

characterised into a pro- inflammatory (M1) and an anti-inflammatory (M2) profile 

[9]. M1 macrophages initiate and sustain inflammatory responses by secreting pro-

inflammatory cytokines and chemokines, and M2 macrophages are pro-resolving, 

phagocytosing, and produce anti-inflammatory signalling compounds [9, 10]. 

Further to their opposing pro- and anti-inflammatory roles, macrophages have 

distinct metabolic profiles depending on the stimuli received [10-12]. M1 

macrophages undergo Warburg metabolic reprogramming towards glycolysis, the 

PPP and fatty acid synthesis (FAS). There are also distinct TCA cycle breaks which 

lead to succinate and itaconate accumulation, and citrate efflux [13]. These 

pathways fuel the pro-inflammatory functions of these cells. Conversely, pro-

resolving M2 macrophages preferentially utilise OXPHOS metabolism, FAO, and 

glutaminolysis as a means of energy generation. Metabolism of amino acids 

arginine, proline, alanine, aspartate, and tryptophan defined the M2 phenotype 

during macrophage differentiation [14]. Inhibition of glycolysis also affected M2 

differentiation and function [15]. The immunometabolism of monocytes has been 

less well defined, particularly in the context of autoimmune disease.  



 
Figure 1.1.1: Summary of major metabolic pathways utilized by primary immune cells. Metabolic processes are colour coded and key metabolites 
highlighted in grey. Solid lines are direct conversions and dashed lines are multi-step reactions. Edited from Buck et al. [10.1084/jem.20151159]. PPP: 
Pentose Phosphate Pathway; G6P: Glucose-6-Phosphate; 3PG:  3-Phosphoglycerate; ATP: Adenosine Triphosphate; FAS: Fatty Acid Synthesis; FAO: 
Fatty Acid (β-)Oxidation; TCA Cycle: Tricarboxylic Acid/Krebs cycle; ⍺-KG: alpha-Ketoglutarate; OXPHOS: Oxidative Phosphorylation; Arg: Arginine; 

Phe: Phenylalanine; Met: Methionine; BCAA: Branched Chain Amino Acid



1.2 Metabolomics 
Metabolomics is the comprehensive measurement of all metabolites and low-

molecular-weight molecules in a biological specimen. Metabolomic profiling refers 

to the identification and quantitation of the compounds of metabolism. This can be 

examined in the context of disease phenotypes, genetic differences, environmental 

influences, and pharmacological perturbations. Variation in the metabolomic profile 

will reflect biochemical changes caused by physiological or pathological processes. 

Untargeted metabolomics is commonly used for biomarker discovery in mammalian 

models and has also been applied to the study of microbes, plants, food products, 

and environmental systems. Metabolomic profiling also has clinical and industrial 

relevance. Metabolomic assays are increasingly used to screen and diagnose 

inborn errors of metabolism in neonates [16, 17], and analysis of primary and 

secondary metabolites is used to optimise cell culture conditions for 

biotechnological applications [18]. 

 

Untargeted metabolomics is an important first step in biomarker discovery. 

Metabolite activity screening [19] integrates metabolomics data with systems 

biology information to identify metabolites and pathways that moderate a given 

phenotype. This is particularly relevant in the context of cellular metabolomics, 

where different cells and tissues can be affected in a given condition. Metabolism 

can drive energy production, macromolecule synthesis, control intracellular 

signalling, post- translational modifications, and impact cell survival. Certain 

metabolites have also been shown to play a role in epigenetic modifications that 

drive inflammation in monocytes [20-22]. There are 114,100 metabolites currently 

identified by the Human Metabolome Database (HMDB; https://hmdb.ca/about)[23]. 

Only 21,000 have been detected and identified, and approximately 2,000 are 

considered major (or primary) metabolites in the global human metabolome [24]. 

There are five hierarchical levels of chemical metabolite classification. Level 1 – a 

confirmed structure with ≥2 orthogonal properties from a pure reference standard 

acquired under identical analytical conditions – represents the highest quality 

identification standard [25]. Thus, a major bottleneck of metabolomic analysis is 

sufficient optimisation to reliably identify such an extensive range of compounds. 

https://hmdb.ca/about
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1.2.1 Liquid Chromatography Mass Spectrometry (LC-MS) 
Liquid-chromatography mass spectrometry (LC-MS) is the gold standard for 

metabolomic analyses because of its high sensitivity, specificity, and reproducibility 

[19, 26]. Modern quadrupole time-of-flight (Q-ToF) spectrometers are capable of 

measuring across five orders of magnitude and into the picomolar range while still 

allowing effective molecular identification. Given the diversity of ionic and polar 

properties across metabolite classes, there is no single LC-MS assay or method 

capable of comprehensively measuring the full metabolome of a given sample. Gas 

chromatography (GC)-MS can complement untargeted analyses by allowing 

detection of low-molecular-weight and volatile analytes [27]. Changes in study 

design and analytical strategy can influence the quality of the data acquired and 

how it is interpreted. A schematic overview of LC-MS instrumentation is shown in 

Figure 1.2.1. 

 

Commercial metabolomics platforms such as Metabolon Inc. 

(https://www.metabolon.com/) and the Broad Institute 

(https://www.broadinstitute.org/metabolomics) analyse each experimental sample 

using four distinct LC-MS methods [28]. This enables broad metabolome coverage 

covering a range of analyte polarity and chemical properties. However, a number of 

key studies regularly cited in the literature (and indeed in this work) do not describe 

these LC-MS methods or sample preparation techniques in sufficient detail to allow 

replication defined by minimum required reporting guidelines [29]. Furthermore, 

these methods may not be optimised for the specific sample matrix or experimental 

conditions, but rather fit into a one-size-fits-all approach to standardise metabolomic 

profiling. 

1.2.1.1 High Performance Liquid-Chromatography (HPLC) 
Compounds are separated by high performance liquid chromatography (HPLC) 

based on three primary characteristics: polarity, electrical charge, and molecular 

size. Metabolites can have a very wide range of structures and physicochemical 

characteristics, which will ultimately affect their polarity. To achieve optimal 

coverage of the metabolome a multi-method LC-MS strategy is often employed [30-

35]. This typically involves a combination of hydrophilic interaction chromatography 

(HILIC) and reverse-phase (RP) chromatography optimised for polar and non-polar 

compounds, respectively.  

https://www.metabolon.com/
https://www.broadinstitute.org/metabolomics
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In LC method development there are two key ways to manipulate chemical 

attractions: the mobile phase(s) and the stationary phase. The stationary phase 

pertains to the packing material within the chromatographic column. HILIC 

chromatography contains a stationary phase (e.g. silica, amine, zwitterionic etc.) 

which favours polar metabolite retention (amino acids, nucleic acids, sugars and 

small organic acids) when coupled with an appropriate organic mobile phase 

gradient [36](see below). RP chromatography bonds carbon tails (C8/C18/C30) to 

the silica layer and is optimized for binding of non-polar compounds such as lipids. 

Chromatographic columns can also vary on column length or diameter and packing 

material or size. RP chromatography is not optimized for polar compounds, and 

because these metabolites are not effectively retained within the column they elute 

early in the method (and vice versa for HILIC). Many metabolites eluting at this 

void/dead volume means more optimization is required for the LC method. 

 

Mobile phases can affect compound separation and elution in LC-MS experiments. 

Gradient elution can improve separation of complex sample matrices, sharpen 

peaks, and reduce total method time. A gradient elution with two or more different 

mobile phases allows control of the levels of organic solvent and can alter the 

retention of metabolites within the column. The percentage of organic solvent 

(typically mobile phase B) is carefully manipulated to enhance separation of 

metabolite classes. The water content of gradients is important for HILIC 

chromatography, where metabolites bind to a polar stationary phase and are eluted 

by increasing water content [27] with an organic to aqueous gradient. For untargeted 

metabolomic analyses an LC method with a varied gradient over 15-20 mins is 

generally sufficient to cover broad metabolite species and effectively separate many 

isomers (molecules with identical molecular formulas but distinct structural 

arrangements) and metabolites with similar masses. The interaction of the mobile 

phase with the stationary is crucial for efficient separation of metabolites. HILIC 

columns are suited to more polar solvents (methanol, acetonitrile), and RP 

chromatography demand less polar (chloroform, isopropanol).



 

Figure 1.2.1: Schematic Overview of Liquid Chromatography Mass Spectrometry (LC-MS) Instrumentation. Mixing of mobile phases by the binary pump 
creates a gradient of organic and inorganic solvent which moves through the HPLC column at a defined flow rate. This process allows separation of the 
heterogenous metabolite matrix of samples loaded onto the HPLC column. Upon vaporisation in the mass spectrometer samples are ionised (in this case by 
electrospray ionisation) and accelerated through the drift tube. The collision cell fragments charged ions and pulses them up the MS funnel until they are 
received by the ion detector and visualised using the appropriate software. HPLC: High Performance Liquid Chromatography.



Another way to separate isomers and improve chromatography is to incorporate 

mobile phase additives. Mobile phase components must be sufficiently volatile to 

allow vaporisation in the ESI source, and free from impurities that can impact 

sensitivity by adduct formation or increasing background. Additives are typically 

acids or ammonium salts which are used to buffer mobile phases to improve 

ionization of analytes and stationary phase, while improving chromatography and 

retention time reproducibility [37]. Mobile phase additives can alter compound 

retention and peak shape, affecting retention time and abundance measurements, 

respectively. The pH of the mobile phase is another crucial consideration that can 

dramatically affect analyte retention behaviour. Retention of acidic or basic 

functional groups can be drastically altered by the pH of the mobile phase, which 

should be strictly controlled. A high pH mobile phase can often improve MS 

sensitivity, metabolite detection and peak shape [38, 39], particularly for HILIC-

based methods.  

 

Analysis of polar metabolites by RP chromatography is challenging but can be 

achieved by manipulating mobile phase conditions. Addition of an ion-pairing agent 

to mobile phases can improve retention and detection of charged polar metabolites 

[40]. Ion pairing agents (quaternary amines, alkyl-sulfonates/-

sulphate/alkylammonium salt, volatile acids, etc.) are compounds that contain both 

an ionic functional group and a hydrophobic portion. They act by interacting with 

counter-ions in the sample matrix to form pseudo-neutral complexes. This can 

greatly improve chromatographic peak quality [27, 41]. However, the use of ion-

pairing agents in LC-MS requires very careful consideration and comes with a 

number of caveats. Most notably, ion-pairing agents are challenging to remove 

completely from the LC system/column once introduced, and generally require 

dedicated instrumentation [42]. They can also diminish column performance over 

time requiring additional column maintenance and, in some cases, suppress 

biologically relevant signals. 

 

Changes to mobile phase composition, gradient, or column type will affect 

metabolite coverage and retention. Both flow rate and injection volume can affect 

retention time, and injection volume (and its relationship with column size & 

diameter) can additionally impact metabolite abundance measurements and 

chromatography [43, 44]. There are countless variables to consider across the LC-
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MS platform, and those affecting chromatography can have knock-on effects to MS 

detection. 

1.2.1.2 Mass Spectrometry (MS) 
After metabolite separation (by LC as described above) mass spectrometry (MS) is 

used to detect and identify compounds in a given sample matrix [24]. Most 

metabolomic LC-MS methods rely on electrospray for ionisation and detection of 

charged metabolites [27]. Quadrupole time-of-flight mass spectrometry (QToF-MS) 

is the method of choice for metabolomic investigations. These instruments combine 

ToF and quadrupole instruments to generate spectra with high mass accuracy, 

speed and sensitivity [45]. Mass-to-charge ratios are determined by the speed that 

ions move down the flight tube to the detector. QToF-MS analysers provide 

excellent dynamic range, high mass resolution and mass accuracy. 

 

Metabolite abundances are determined by measuring the area under the curve 

(AUC) of chromatographic peaks. However, this AUC readout alone is not a 

quantitative metabolite measurement. Ion counts can be affected by ionisation 

efficiency, and ion suppression is common in ESI-MS. Inefficient separation of 

isomers can confound metabolite measurements. Without the addition of a standard 

curve via repeated injections of a known standard(s)(or development of a targeted 

method) it is not possible to quantitatively measure metabolites as part of an 

untargeted LC-MS experiment [46]. Thus, for untargeted metabolomics relative 

quantitation by comparing metabolite differences from one group to another is the 

modus operandi for comparing experimental conditions/groups. LC-MS can be less 

reproducible than gas chromatography (GC), with variation arising from the ESI 

source, column deterioration, and mobile phase composition [47]. Ion suppression 

is an important issue in LC-MS investigations particularly in the analysis of complex 

samples such as cell lysates by ESI. This occurs when a high abundance ion inhibits 

the electrospray ionization and thus the signal of coeluting ions [48, 49]. This can 

be caused by mobile phase additives (particularly salts or ion pairing agents [see 

above]) or by metabolites themselves. A related issue is adduct formation, where 

additional peaks appear in a chromatogram mimicking a metabolite feature [24]. 

These are important issues which can affect interpretation of metabolomic data and 

should be carefully considered during method development and data analysis. 
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1.2.1.3 Sample Preparation for LC-MS 
Sample preparation is the first step in ensuring reproducibility and accuracy for 

metabolomics analyses. There are two key sample preparation steps in cellular 

metabolomics: quenching and metabolite extraction. Quenching is necessary to halt 

enzymatic activity to prevent metabolite degradation. This needs to be carried out 

immediately following sample collection to preserve sample composition. 

Quenching can be easily achieved in suspension cells by rapidly altering the 

temperature or pH of the sample. Altering pH can modify the chemical composition 

of metabolites, and higher temperatures may cause the loss of heat-sensitive 

metabolites and build-up of degradation products. Rapid cooling in liquid nitrogen, 

dry ice, or cooled buffers/extraction solvents is commonly used to quench 

mammalian cells [50]. Suspension cells (such as primary human monocytes) do not 

require cell harvesting by scraping or trypsin-EDTA, steps which have been shown 

to influence the intracellular metabolome [51, 52]. These cells can be quenched 

immediately after separation from culture medium by (chilled) centrifugation. Rapid 

filtration steps have been developed in lieu of centrifugation and are used in large 

cohort studies and biotechnological applications [53]. Even with efficient quenching, 

the turnover rate of some metabolites is so high that they will begin to degrade within 

seconds 

 

Organic solvents are used in metabolomics studies to extract the metabolite fraction 

by precipitating protein (and nucleic acids) from the sample matrix. The choice of 

extraction solvent has less to do with the material being examined, but profoundly 

impacts metabolome coverage, and thus is an important consideration. Metabolite 

extraction should be universal to recover as many metabolites as possible, however 

this presents an intrinsic problem. The chemical diversity (molecular weight, polarity, 

acidity, stability, function) of metabolites is such that their polarity ranges from very 

hydrophilic compounds, such as lactate, amino acids, and tricarboxylic acid (TCA) 

cycle intermediates, to hydrophobic compounds, such as lipids and fatty acids. 

Thus, the extraction protocol can be considered the limiting step in intracellular 

metabolite profiling. To overcome this problem, multi-step extraction and biphasic 

protocols have been developed. The classic extraction protocol developed by Bligh 

and Dyer [54] was optimized for lipid analysis and combined chloroform, methanol 

(MeOH), and water. This separates hydrophobic, non-polar compounds in the 
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chloroform layer at the bottom, from more hydrophilic, polar metabolites in the upper 

MeOH/water layer. The interface between the two layers contains proteins and 

ribonucleic acid (RNA) which can be preserved for subsequent analyses [55-57]. 

Other extraction protocols split samples to incorporate multiple extraction solvents 

optimized for different analytical methods or sub-metabolomes [52]. Despite these 

comprehensive extraction protocols, many studies in mammalian cells have found 

monophasic methanolic extractions to be sufficient for metabolomic analyses. 

Indeed, the majority of intracellular metabolites are small polar molecules amenable 

to detection by a variety of solvents. An 80/20 solution of MeOH/H2O (80% MeOH) 

has been used in a wide variety of metabolomics investigations [58], is proven to be 

effective in the Jurkat T-cell line [59, 60], and can detect a broad range of metabolite 

classes [61]. Acetonitrile (ACN) at various concentrations has also proven effective 

[62]. Isotopically labelled standards from a range of metabolite classes can also be 

added to extraction solvents for compensation of technical/experimental variability. 

1.2.2 LC-MS Data Analysis 
Once LC-MS data has been acquired there are several additional steps that need 

to be completed before the results can be appropriately interpreted. The essential 

stages in the metabolomic data pre-processing workflow are: peak picking, peak 

filtering, peak alignment, chromatograph integration, and spectral processing. The 

process can be strengthened with appropriate quality and experimental controls [63, 

64]. Some chromatographic peaks require manual review, particularly where there 

is evidence of peak splitting, shouldering, or suboptimal separation of isomers [65]. 

Subsequent quality control (QC) filtering can be performed to ensure that only high 

quality metabolite features are brought forward for statistical analysis [47]. 

Additional post-processing steps can include missing value imputation [66], data 

normalisation (see below), and machine learning for class prediction and pathway 

analysis.  

 

Metabolite identification is a crucial step in an untargeted metabolomics workflow 

that causes substantial bottlenecks. There are five levels of confidence for 

metabolite IDs [25] and the top three are considered acceptable for reliable 

identification/annotation [47]. There are major differences in identification workflows 

between analytical techniques. For LC-MS feature annotation is achieved by 

comparing the detected masses and isotopic profile generated from experimental 
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data to databases of known metabolites within an appropriate mass tolerance 

window [25]. Today there are a number of high quality, curated, open source 

databases with MS1 and MS/MS information, including HMDB [23], METLIN [67, 

68], MassBank [69], and LIPIDMAPS [70]. Still, metabolite features can be 

annotated with multiple potential IDs or in many cases not at all. Appropriate 

statistical analyses are dependent on the experimental design, and the massive 

amounts of data generated from MS experiments can be challenging to work with. 

There are several open source and vendor-specific options for statistical analysis of 

metabolomic data, and here we have utilised the Agilent MassHunter suite. 

1.2.2.1 Metabolomic Data Normalisation 
Before we can extract meaningful data from complex and noisy datasets [47], data 

normalisation must be performed. This is especially pertinent for cellular 

metabolomic data, which is particularly susceptible to interpersonal and 

experimental variation in metabolomic data [71]. There are two main sources of 

variability in metabolomic data; confounding variables from experimental sources 

such as sample preparation and LC-MS conditions (e.g. instrument settings, signal 

drift, MS source contamination, column performance, mobile phase preparation etc. 

[72]), and interpersonal biological variations (physiological differences, sample 

degradation, variation in sample measurements, etc.) between samples [47, 73-75]. 

It is impossible to correct for all of these confounding variables in the course of a 

defined metabolomics investigation, but there are normalisation strategies that can 

improve quality of results. Few metabolomics investigations report their 

normalisation approaches in great detail, and as with sample preparation, there is 

no consensus strategy for normalising metabolomic data. Multiple normalisation 

strategies are recommended to strengthen metabolomics data integrity [47, 72, 76, 

77]. Gagnebin et al. [78] have proposed a sequential normalisation strategy to 

improve data quality. A two-pronged approach combining biologic normalisation to 

account for technical variation and statistical normalisation to correct interpersonal 

differences may be appropriate for investigations of primary cellular metabolism. In 

addition to calculating accuracy of normalisation strategies, biological relevance, 

convenience, and cost should also be considered [75]. Normalisation approaches 

typically fall into one of two categories: sample-based or data-based. 
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1.2.2.1.1 Sample-Based Normalisation Approaches 

1.2.2.1.1.1 Housekeeping Metabolites 
Efforts have been made to identify metabolites present at stable and consistent 

concentrations that can be used for data normalisation as is the case for 

housekeeping genes [79]. Creatinine is routinely used for normalisation in urinary 

metabolomic studies where it’s concentration is relatively stable [76]. However 

levels can vary by age, sex, race, diet, activity, and health/disease status [80] – 

similar to sources of variation in the human metabolome. It is recommended that 

normalisation to creatinine be combined with additional normalisation techniques 

such as osmolality [76] or integrated into sequential normalisation strategies [78]. 

Dilution of urine based on creatinine content to correct differences in total urine 

volume/output can be easily incorporated into a sample preparation protocol prior 

to sample processing and LC-MS analysis [81]. Given the dynamic nature of cellular 

metabolism, finding a single “housekeeping metabolite” for normalisation of cellular 

metabolomic data has been more challenging [71]. Relying on a single compound 

to evaluate the overall sample concentration is not recommended. Slight 

inaccuracies in measurement or interpersonal variations (from inefficient quenching 

for example) can introduce bias to the sample matrix. Furthermore, metabolite levels 

can change in disease states and could potentially alter flux of other metabolic 

pathways. Thus, normalising to a single metabolite could mask these differences.  

 

Where isotopically-labelled standards have been included in the extraction solvents, 

these can be used to account for technical variation in the sample preparation 

process. For untargeted metabolomics it is recommended that a range of standards 

representing several metabolite classes be used [64]. The sum of detected 

phospholipids in HepG2 cells was presumed to be a surrogate measure of cellular 

membrane content and used for metabolomic data normalisation [82]. Cao et al. 

[83] identified a panel of 11 intracellular metabolites that were equally as effective 

as protein content for normalisation of metabolomic data in the MDCK canine kidney 

cell line. Given the diversity of energy utilisation across human cells, it is unlikely 

that a single metabolite (or selection of metabolites) remains constant in other 

matrices and can be used to normalise metabolomic data. Their utility is further 

limited by the need for validation for each cell type and application under 

investigation – an ideal “housekeeper” should remain constant across all cell lines 
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and treatments in the experiment. Human primary cells are massively dependent on 

glucose as a fuel source. Studies have shown that there are just four key enzymatic 

steps in this pathway that control glycolytic flux [84]. The metabolite products of 

these reactions may give an insight into the state of the cell’s metabolism. In the 

context of monocytes Raulien et al. [85] observed changes in α-ketoglutarate, 

aspartate, and malate in response to the gram-negative bacterial product 

lipopolysaccharide (LPS) at early timepoints. These metabolites may be considered 

benchmarks of activated monocyte metabolism – in the same way creatinine is to 

urine output and total metabolite volume – and may be applicable to our 

experimental design. 

 

Where single metabolites may not be relevant for data normalisation, measuring the 

entire metabolome content by calculating the area of the total ion chromatogram 

(TIC) may be a solution. This method is routinely used for normalisation of proteomic 

data but has also been used in metabolomics [86, 87]. The underlying assumption 

for TIC normalisation is that the total intensity of the spectrum should be proportional 

to the total concentration in the sample, and that if there is an equal amount of 

sample, then the summed intensity in the spectrum should be the same across all 

spectra. Normalisation by TIC uses the AUC value as a scalar to correct each 

individual spectrum to the same total metabolite intensity. This method is sensitive 

to the technical difficulties of LC-MS, namely ion suppression and batch variability. 

Some normalisation algorithms have been developed on similar principles. MS “total 

useful signal” (MSTUS) was first introduced by Warrack et al. [76] for normalisation 

of urinary metabolomic data, where it performed comparably to urine osmolality. 

This was in line with the group’s recommendation that multiple normalisation 

techniques be employed as opposed to a single metabolite/biological readout. 

1.2.2.1.1.2  Biomass Normalisation 
Metabolite intensity is proportional to cell number [88], and the efficacy of 

metabolomic normalisation strategies can be calculated by their correlation to cell 

number. While cell number alone is a commonly used method for metabolomic data 

normalisation [58], it is still subjective. Therefore, robust quantitative readouts of cell 

volume are required to accurately improve technical variability for normalisation 

purposes. Dry weight is commonly used in tissue and plant metabolomics as 

samples can be reliably measured prior to metabolite extraction. Measuring cell 



   
 

 
 

35 

weight is more difficult due to issues with sensitivity, yet has been employed in some 

cellular metabolomics investigations [89, 90]. Estimating cellular membrane content 

by measuring phospholipids has been used to normalise metabolite readouts from 

HepG2 cells [82]. A number of intrinsic sample-based normalisation readouts have 

been shown to correlate well with cell number. 

 

Normalisation to deoxyribonucleic acid (DNA) concentration of residual cell pellets 

was first suggested by Silva et al. [88], and has been employed in various 

metabolomic analyses [91, 92]. DNA concentration typically remains constant 

across cell types and correlates well with protein and metabolite concentrations [71, 

88]. DNA content can be stably measured post-metabolite extraction and allows 

absolute quantification of transcripts, proteins and metabolites in cells [74]. More 

recently thymine concentration alone has been proposed as a more accurate 

normalisation strategy for metabolomics investigations [93]. While RNA may be 

detectable in the cell pellet, it is unlikely to remain stable enough during extraction 

and storge for use as a normalisation factor. 

 

Despite protein precipitation being a fundamental step of the sample preparation 

process, sample normalisation by protein content is commonly used to normalise 

metabolomic data. This is usually done by measuring protein content in the cell 

pellet following isolation of the metabolite fraction, and most commonly by 

bicinchoninic acid (BCA) assay. Protein (and DNA) content correlate well with cell 

number [94] and have been used for normalisation in many cellular metabolomic 

investigations [89, 95-97]. This technique is also employed by Metabolon for 

normalisation of cellular metabolomic data [96-98]. Despite its common use for 

metabolomic normalisation it is not specified whether the protein content is 

measured in the metabolite fraction or the cell pellet. The majority of the protein 

present in the cell should precipitate to the bottom during high-speed centrifugation, 

and the metabolite fraction should only contain low molecular weight compounds for 

analysis. However residual protein can be measured in the metabolite fraction and 

used to normalise metabolomic data. 

1.2.2.2 Data-Based Normalisation Approaches 
Given the massive inter-personal variation in metabolism, large cohorts are often 

necessary to sufficiently power untargeted metabolomics investigations. This 
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presents a challenge for measuring large numbers of samples in a single MS 

experimental worklist. It is not uncommon for experiments to be split across several 

instrument runs, particularly where samples are measured with multiple methods. 

For instance, the Human Serum Metabolome (HUSERMET) Consortium have been 

measuring healthy human serum by GC-MS, UPLC-MS, and NMR spectroscopy for 

several years [64]. Correcting for inter-batch variation is crucial to account for 

differences in instrument variation (e.g., signal drift, MS source contamination, 

column performance, mobile phase preparation etc.). This inter-batch error can 

compromise the technical precision of LC-MS measurements and obscure 

biologically relevant signals. To overcome this many LC-MS-based metabolomics 

data processing workflows monitor (and correct for) signal intensity drift using 

pooled quality control (PQC) samples [63]. This involves combining an equal volume 

of all samples in a given experiment. These PQC samples can be used for method 

development and validation to assess metabolome coverage, correct for batch 

variability, and prime the LC-MS for the relevant sample matrix. Data-based batch 

correction algorithms have also been developed [99-101] and can easily be 

integrated into data analysis workflows [102]. 

 

There have been countless data normalisation programs developed for untargeted 

metabolomic data [103-109], many of which overlap in their methodology. One such 

platform is NOREVA [102], which combines 24 different normalisation methods to 

compare efficacy across five different criteria. This platform was recently upgraded 

[110] to allow time-course and multi-class analyses in a total of 168 normalisation 

strategies. Statistical normalisation strategies typically fall into two categories: those 

which remove unwanted sample-to-sample variations and those which adjust biases 

among various metabolites to reduce heteroscedasticity. PQC samples can also be 

integrated into normalisation strategies, or periodically analysed throughout an LC-

MS analytical run to provide robust per-metabolite quality assurance [64, 104]. 

1.3 Monocytes 
Monocytes are myeloid cells accounting for approximately 10% of circulating 

leukocytes whose primary role is immune defence. These cells are derived from 

myeloid bone marrow precursors and can transmigrate into tissues to differentiate 

into macrophages or dendritic cells. In humans, monocytes are identified by surface 

expression of CD14 and can be further characterised into three subsets; classical 
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(CD14++CD16-), intermediate (CD14++CD16+) and non-classical 

(CD14+CD16++), based on increasing expression of the FcγIII receptor CD16 [111] 

among other markers. These subsets are also functionally and transcriptionally 

distinct [112-114]. Despite these discrete transcriptional and proteomic [115] 

profiles, whether they represent different cell types or simply transitional 

developmental stages is not yet understood [116]. 

 

Long considered a circulating precursor of macrophages and dendritic cells, 

monocytes are becoming more recognised for their heterogeneous responses to 

inflammation and roles in tissue repair and trained immunity [117]. Prior to 

differentiation monocytes are typically pro-inflammatory cells. Monocytes can 

rapidly propagate inflammation directly by phagocytosis and antigen presentation, 

as well as through release of cytokines, reactive oxygen species (ROS) and other 

inflammatory signalling molecules [118]. Importantly, IL-1β can be produced by both 

the traditional NLRP3 inflammasome [119, 120] and an alternative, potassium-

independent pathway in these cells [121]. During inflammation (sterile or infectious), 

circulating monocytes extravasate to inflamed tissues via the leukocyte recruitment 

cascade of rolling, adhesion, and transmigration. Key chemokines for monocytes 

recruitment include monocyte chemoattractant protein (MCP) 1-4, and other 

members of the CCL and CXC families [122]. Monocytes can rapidly become the 

dominant infiltrating mononuclear phagocyte in damaged tissues and draining 

lymph nodes. In inflamed tissues (and in the circulation) monocytes have distinct 

roles in propagating inflammation [123].  

1.3.1 Monocyte Metabolism 
In order to perform these diverse functions, monocytes need effective energy 

processing systems. In vitro stimulation of myeloid cells with LPS has pinpointed an 

increase in glycolysis and a decrease in OXPHOS as a defining event of pro-

inflammatory innate immune activation (Figure 1.3.1). However, unlike the observed 

Warburg effect in macrophages, decreased OXPHOS is not a universal myeloid 

response to pathogenic stimuli in monocytes. These cells exhibit differing metabolic 

and inflammatory responses to different microbial stimuli. Lachmandas et al. 

investigated the differential metabolomic effects of various microbial stimulants in 

human monocytes and found diverse metabolic and inflammatory phenotypes [97]. 

LPS did increase glycolysis rates at the expense of OXPHOS, however Pam3CysK4 



   
 

 
 

38 

and other bacterial lysates increased oxygen consumption. Candida albicans (C. 

albicans) stimulation for instance led to sustained increases in both glycolysis and 

OXPHOS for up to 24 hours [124].  

 

Disparities in metabolic activation may result from differential toll-like receptor (TLR) 

signalling [125]. TLRs are pattern recognition receptors (PRRs) which recognise 

molecular signatures of microbial pathogens and are crucial in innate immune 

responses. Monocytes express all known TLRs, with TLRs 1, 2 and 4 present at 

high levels [125, 126]. TLR4 recognizes LPS and initiates a signalling cascade via 

MyD88 or TRIF leading to NF-κB/MAPK/IRF5 or IRF3 activation, respectively [127]. 

This ultimately alters inflammatory gene regulation. TLR4 activation can influence 

NAD+ levels in macrophages [128], and in monocytes NAD+ depletion inhibited 

TLR4 signalling, ultimately abrogating IL-1β production [129]. The decrease in 

OXPHOS typically seen with LPS stimulation can be reversed by blocking 

microRNA-125b (miR-125b), which reduces mitochondrial respiration and promotes 

elongation of mitochondria [130]. Glycolysis and PPP activity are upregulated in 

macrophages in response to LPS, leading to succinate accumulation and HIF-1α 

stabilisation to sustain IL-1β production [8, 128]. This metabolite can act as a node 

for various metabolic pathways [131, 132], or induce a net anti-inflammatory effect 

via SIRT1 [128]. Here succinate appears to act as signalling molecule within the 

broader network of TLR signalling. Whether they play a similar role in monocyte 

activation remains to be seen. 

 

Primary monocytes show remarkable metabolic plasticity in instances of nutrient 

deprivation. This flexibility is particularly beneficial during periods of oxygen or 

glucose deprivation. Under hypoxic conditions monocytes can shift away from 

mitochondrial-associated metabolism and increase glycolytic flux. Rodgers et al. 

[86] simulated the rheumatoid arthritis (RA) synovial environment, which has an 

extremely limited oxygen supply. Indeed, these conditions increase glycolytic and 

purine metabolism intermediates and decrease TCA cycle metabolites. Synovial 

monocytes compensate for these hostile conditions by shuttling carnitine to the 

mitochondria and maintain fatty acid oxidation (FAO). Conversely, in low glucose 

conditions (or where competition for glucose is high) monocytes increase FAO via 

oxidative phosphorylation to meet their energy demands [85]. Recent work 
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demonstrated how dietary fructose can disrupt this metabolic flexibility. Fructose 

reprogramed primary monocytes to favour glutaminolysis and oxidative metabolism 

above glycolysis, and increased pro-inflammatory cytokine levels in in vitro and in 

in vivo models [133]. Excess lactate production (likely from glycolysis) can also 

induce an anti-inflammatory phenotype in primary monocytes [134]. Both nutrient 

availability and stimulus are crucial to determine the metabolic and inflammatory 

response in these cells.  

 

As in macrophages, gylcolysis is an important metabolic pathway for monocytes. 

Upon activation these cells increase glucose uptake and glycolytic metabolism 

[135]. This increase in glycolysis was regulated by mTOR-induced glucose 

transporter (GLUT)-1 expression. GLUT1 is typically stored intracellarly [135], but 

can be expressed on the cell surface in times of nutrient stress. Glycolysis in 

monocytes is essential for effective vascular adhesion [136], differentiation [15], and 

cytokine production [97, 124]. Given that gylcolysis is a less efficient energy 

generating pathway than OXPHOS, it seems unlikely that this pathway is being used 

purely for cellular metabolism. The glycolytic switch in monocytes could create 

substrates for DNA and cell membrane synthesis to facilitate cell growth and 

differentiation [137]. Recently certain metabolites have been shown to play a role in 

epigenetic modifications that drive inflammation in monocytes [20-22]. Further work 

is needed to profile the precise role of metabolites (and their associated pathways) 

with monocyte function.  

1.3.2 Monocytes in Disease 
Persistent activation of monocytes at disease sites has been implicated in the 

pathogenesis of a number of conditions. Defects in monocyte metabolism have 

been demonstrated in a range of acute and chronic diseases, and most recently in 

COVID-19 [138-141]. In many of these conditions, macrophages are the primary 

drivers of inflammation. Before monocytes infiltrate disease sites and differentiate 

into macrophage subtypes, they undergo metabolic and inflammatory changes in 

the circulation that can drive systemic inflammation. 
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Figure 1.3.1: Summary of Metabolomic Alterations and Activated Pathways in LPS-
Activated Monocytes. LPS activation in monocytes promotes Warburg metabolism. 
Increased glucose uptake (via GLUT1) drives increased glycolysis and flux through the TCA 
cycle. TCA cycle intermediates such as fumarate and ⍺-KG can trigger epigenetic changes 
to drive pro-inflammatory cytokine production. TCA Cycle activity can also feed FAS, and 
cholesterol synthesis  can have similar effects on cytokine synthesis. Simultaneously, 
OXPHOS is decreased in response to LPS. ⍺-KG: alpha-Ketoglutarate; FAS: Fatty Acid 
Synthesis; LPS: Lipopolysaccharide; OXPHOS: Oxidative Phosphorylation; ROS: Reactive 
Oxygen Species; TCA Cycle: Tricarboxylic Acid/Krebs cycle. 
 

1.3.2.1 Rheumatoid Arthritis (RA) 
Rheumatoid Arthritis (RA) is the most common inflammatory joint disease in the 

world. This systemic autoimmune disease is characterised by chronic synovial 

inflammation causing pain, dysfunction, and ultimately destruction of cartilage and 

bone in affected joints [142]. Monocytes – in particular the CD14+CD16+ 

intermediate monocyte subset – have been heavily implicated in the pathogenesis 

of RA. This subset is expanded in RA patients compared to healthy controls [143] 

and positively correlates with disease activity [144]. Systemic MCP-1 levels were 

significantly increased in the years preceding disease onset [145], implicating early 

monocyte chemotaxis in the initiation of RA. Higher absolute monocyte levels in 

treatment-naïve patients are predictive of a reduced response to treatment with 

methotrexate [146]. These cells are a major source of inflammatory cytokines and 

were potent inducers of T helper (Th)17 cell expansion [145].  
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Monocytes (and macrophages [147, 148]) have demonstrated aberrant metabolic 

phenotypes in RA [149]. These cells are present in affected joints where they drive 

pathogenesis by propagating inflammation in the synovial microenvironment. In a 

mouse model of RA, synovial fluid-derived succinate promoted IL-1β release from 

macrophages [150]. Low oxygen levels in the synovium can contribute to this 

metabolic dysfunction. Hypoxia exacerbated inflammatory cytokine release and 

increased fatty acid oxidation (FAO) in monocytes exposed to RA synovial fluid [86]. 

These oxygen-deprived monocytes showed a distinct switch from glycolysis to FAO 

compared to their circulating counterparts. Peripheral blood monocytes of RA 

patients display a hypermetabolic phenotype with both enhanced mitochondrial 

metabolism and increased expression of glycolytic enzymes [151]. These cells rely 

heavily on glycolysis during subsequent LPS activation. The glycolytic enzyme ⍺-

enolase is highly expressed on the cell surface of monocytes/macrophages from 

RA patients where it can be activated by autoantibodies to induce pro-inflammatory 

cytokine production [152]. These data collectively demonstrate the metabolic 

plasticity of monocytes in RA. 

1.3.2.2 Atherosclerosis & CVD/CAD 
Inflammation plays a key role in the pathogenesis of atherosclerosis, and 

monocytes contribute considerably to this. Foam cells derived from circulating 

monocytes accumulate lipids in atherosclerotic plaques and propagate a 

hyperinflammatory microenvironment [153]. Monocytes and monocyte-derived cells 

also share metabolic abnormalities that contribute to this pathogenic phenotype. 

These cells typically have increased glucose consumption, ATP production, and 

cytokine production compared to their healthy equivalents. It has recently been 

suggested that innate trained immunity – transcriptional and epigenetic changes – 

are important in the pathogenesis of atherosclerosis [154]. Cholesterol synthesis is 

a fundamental requirement for the induction of trained immunity [20, 21], and the 

lipid-rich plaque environment disrupts monocyte fatty acid metabolism leading to 

increased pro-inflammatory cytokine production [155]. Atherosclerosis is typically 

treated with statins – lipid lowering drugs which inhibit cholesterol synthesis. 

Secondary to their systemic cholesterol-lowering effects, statins can offset 

inflammatory responses to LPS in monocytes [156-159] and may be useful cell-

specific metabolic therapy in other autoimmune conditions. 
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1.3.2.3 Human Immunodeficiency Virus (HIV) 
Monocytes play key pathogenic roles throughout the course of Human 

Immunodeficiency Virus (HIV) infection and its associated co-morbidities [137, 160]. 

HIV+ individuals showed higher monocyte GLUT1 expression, in particular the non-

classical and intermediate subsets [135]. These subsets are associated with 

inflammation and peripheral immune activation during HIV infection [161, 162]. As 

these subsets expand during disease progression, so too does the demand for 

glucose. HIV+ individuals also present with impaired glucose tolerance, insulin 

resistance, altered glucose metabolism, and dyslipidaemia [163]. Systemic 

metabolomic profiling has revealed HIV signatures for various subgroups and 

biomarkers of HIV infection [164-167]. Despite these data there are currently no 

confirmed mechanistic links between the increase in monocyte glucose metabolism 

and inflammation in HIV-infected individuals. Some recent works have highlighted 

a lipidomic signature of HIV infection which correlates with some monocyte readouts 

[168-170]. These results may be strengthened/complimented by well-considered 

cellular metabolomics investigations. 

1.4 Anti-Neutrophil Cytoplasmic Antibody (ANCA)-
Associated Vasculitis (AAV) 

Autoimmune disease affects up to 10% of the world’s population with a considerable 

burden of morbidity and mortality [171, 172]. Anti-Neutrophil Cytoplasmic Antibody 

(ANCA)-Associated Vasculitis (AAV) is a rare autoimmune disease affecting the 

microvasculature. The disease is characterised by the presence of autoantibodies 

directed against two proteins: myeloperoxidase (MPO) and proteinase-3 (PR3). 

These proteins are found in the cytoplasmic granules of innate immune cells and 

translocate to the plasma membrane following immune challenge [173]. There are 

three AAV subtypes – granulomatosis with polyangiitis (GPA), microscopic 

polyangiitis (MPA), and eosinophilic GPA (EGPA) – which are defined by their 

clinical presentation. GPA is traditionally associated with PR3-ANCA, whereas MPA 

and EGPA patients are more commonly anti-MPO+ [174, 175]. AAV can involve any 

small blood vessels in the body but most commonly affects the respiratory tract and 

kidneys. Incidence rates range from 0.4 to 24.0 cases per million person-years 

across the disease phenotypes, with additional differences in age, sex, and location 

[174, 176, 177]. There is no known cure for AAV, and there are substantial quality-

of-life burdens associated with the condition. AAV patients have a 2.7-fold increase 
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in mortality compared to the general population [178]. Current treatment strategies 

involve immunosuppression to induce remission, before a switch to maintenance 

therapy to prevent disease relapse [179].  

1.4.1 Pathophysiology of AAV 
Much of our understanding of the pathophysiology of AAV comes from experiments 

carried out in neutrophils. ANCAs were first identified in neutrophils in 1982 as anti-

cytoplasmic antibodies with unknown specificity [180]. Once considered to be 

biomarkers of disease activity, ANCAs are now recognised as pathogenic drivers of 

AAV [181, 182]. Different cytokine profiles have also been defined for anti-MPO and 

anti-PR3 positive disease [183]. However, these antibodies have similar pro-

inflammatory effects on neutrophils in vitro. This supports the idea that other cell 

types are involved in the pathogenesis and disease activity of AAV. 

 

AAV pathogenesis involves dysregulation of both the innate and adaptive immune 

systems. A combination of genetic factors, environmental exposures/infections, 

ageing, and dysfunction of the innate and adaptive immune system can lead to 

ANCA development [174, 182, 184]. Malfunctioning of the regulatory lymphocyte 

compartment leads to loss of tolerance and the development of autoreactive B and 

T cells which produce and recognise ANCA, respectively [185]. Once in the 

circulation ANCA can activate (primed) neutrophils and monocytes expressing 

ANCA on their cell surface (see Section 1.4.2.4). These innate immune cells 

mediate acute injury and are important in the early stages of disease. Persistent T 

cell activation (in particular Th17 cells) is a hallmark of AAV. T cells and mature 

macrophages orchestrate the tissue response to ANCA-induced tissue damage and 

induce a remission state in the later stages. Given how the function of immune cell 

subtypes is intricately linked to their metabolism, there may well be a fundamental 

role for immunometabolism in AAV pathogenesis (reviewed in [186]). The precise 

mechanisms of these metabolic interactions remain to be revealed. 

1.4.2 Monocytes in AAV 
The role of monocytes in AAV has been thoroughly revied by Brunini et al.[187] and 

more recently by Vegting et al. [1]. Figure 1.4.1 is adapted from the latter and 

summarises the role of these cells in the pathophysiology of AAV. Here we expand 

upon a number of these key areas. 
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Figure 1.4.1: Overview on the Role of Monocytes (and Macrophages) in the 

Pathophysiology of AAV. Taken from Vegting et al. [1]. 

 

1.4.2.1 Transmigration & Organ Infiltration 
Circulating and patrolling monocytes are recruited to sites of inflammation by 

chemokine gradients [122, 188]. MCP-1 is a key chemokine for monocyte 

chemoattraction. Increased MCP-1 is found in AAV patient kidney biopsies and 

urine, with urine levels correlating with disease activity [189, 190]. Another promoter 

of monocyte recruitment and macrophage proliferation is macrophage colony 

stimulating factor (M-CSF), which is increased systemically in AAV [191]. This 

suggests that monocytes are rapidly recruited to disease sites. Indeed 

monocytes/macrophages are the predominant infiltrating immune cell found in the 

early glomerular lesions [192, 193]. Soluble CD163 (sCD163) is shed by activated 

monocytes and macrophages and is used as a biomarker of renal flare in AAV [194, 

195]. This increase in sCD163 is likely a result of excessive macrophage activation 

in affected glomeruli. Depletion of inflammatory CCR2+ monocytes significantly 

reduced serum sCD163, glomerular necrosis and crescent formation and in an anti-

MPO mouse model of AAV [196]. Infiltration of monocyte-lineage cells into affected 

kidneys was greatly reduced with no effect on neutrophils. Monocyte exposure to 

MPO-ANCA increased survival and enhanced macrophage differentiation [197]. 

These macrophages had enhanced transforming growth factor (TGF)-β secretion 

and promoted expansion of CD4+ T cells. Monocytes (and neutrophils) form the 



   
 

 
 

45 

core of granulomas where they orchestrate systemic T cell responses [187]. T cells 

are key for induction of tissue damage in ANCA glomerulonephritis [198-200]. As is 

seen in RA [201], T cells and monocytes/macrophages may synergise to drive 

damage at disease sites. While the exact monocyte interactions in AAV granulomas 

are still incompletely understood, the presence of these cells in early lesions coupled 

with macrophage domination in later stages of ANCA-induced glomerulonephritis 

points to an important role for monocytes in AAV granulomatosis. 

1.4.2.2 Monocyte Subsets in AAV 
Disruption of monocyte subsets can contribute to persistent inflammation in 

autoimmune conditions [202]. The intermediate CD14++CD16+ monocyte 

subset has been shown to be enriched in AAV patients compared to healthy 

controls [203, 204]. These cells also produced the highest levels of pro-

inflammatory cytokines in response to anti-MPO (but not anti-PR3). 

Intermediate monocytes have subsequently been recognized as a predictor 

of disease relapse [205]. The function of these cells overlaps with the 

classical and non-classical subsets, but they are typically involved in 

phagocytosis, antigen presentation, cytokine secretion, apoptosis regulation, 

and differentiation [202, 206]. Intermediate monocytes are increased in RA, 

where they induce Th17 expansion and produce high levels of pro-

inflammatory cytokines [145]. Persistent activation and expansion of Th17 

cells is also well documented in AAV [184, 185, 207] and contributes to 

disease pathogenesis. Classical monocyte numbers are increased in giant 

cell arteritis (GCA) - a large vessel vasculitis – and returned to normal levels 

following treatment [208]. High levels of inflammatory macrophage infiltration 

at disease sites are a consequence of this monocyte enrichment. Whether 

the intermediate monocyte subset is the main pathogenic driver of 

inflammation in AAV monocytes is not yet clear. 

1.4.2.3 Cell “Priming” 
When assessing neutrophil responses to ANCA in vitro it is important to replicate 

the biological microenvironment. To achieve this most studies of cellular function in 

AAV incorporate a cell priming step. Given that ANCA titres do not necessarily 

correlate with disease activity [209], the priming events which facilitate ANCA 



   
 

 
 

46 

binding and cellular activation may be a key factor in mediating a pathological 

response to these antibodies. In vivo priming can occur during disease or infection 

[210, 211], either directly by pathogen-associated molecular pattern (PAMP) 

stimulation or indirectly via the resulting milieu of pro-inflammatory cytokines. A 

number of stimuli have been used to prime immune cells for susceptibility to the 

effects of circulating ANCA, including tumour necrosis factor (TNF)-α, LPS, 

complement anaphylatoxin C5a, high mobility group box (HMGB)-1 and cytokines 

such as IL-1β, IL-6, and IL-18 [173, 182, 184].  

 

The most commonly used priming agent in studies of neutrophil function is TNF-α. 

This facilitates p38 and extracellular signal regulated kinase (ERK) and mitogen-

activated protein kinase (MAPK) pathway activation prior to ANCA stimulation [212-

218]. These pathways appear to be important for translocation of MPO and PR3 

from cytoplasmic granules to the plasma membrane. These studies have generally 

used priming TNF-α concentrations of 2ng/ml. However, there are disparities 

between clinically relevant levels of priming factors and those described in the 

literature. This 2ng/ml benchmark is significantly higher than concentrations 

commonly found in the circulation even of septic patients (30–1,300 pg/ml)[219]. 

Locally increased TNF-α production from immune infiltrates and activated epithelial 

cells may be higher and explain this disparity [220, 221]. In-vitro concentrations of 

LPS can have differing effects on IL-1β production and cellular metabolism [97], and 

priming concentrations of TNF-α can vary in in-vitro studies of neutrophil function. 

Given the pleiotropic nature of these priming agents, specific investigations into their 

effects at clinically relevant concentrations in ANCA-activated immune cells are 

warranted. Separating the immunologic and metabolic outputs will also be important 

to reveal the ANCA-specific effects of these stimuli. 

1.4.2.4 Surface Marker Expression 
Monocytes are identified by expression of CD14, a Toll-like receptor 4 (TLR4) co-

receptor that recognised bacterial LPS. Upon LPS binding a signalling cascade is 

triggered ultimately ending in pro-inflammatory cytokine production [222]. Patients 

with AAV express higher levels of CD14 on their monocytes [223]. ANCA binding 

further increases expression of CD14 and other toll-like receptors (TLRs) on 

monocytes [224-226], which suggests that these cells may be more readily activated 

by TLR-mediated stimuli. CD14 expression can correlate with both PR3 and MPO 
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expression on classical monocytes in AAV patients [223]. This suggests a link 

between monocyte phenotype and ANCA pathology. 

 

Because monocytes express ANCA antigens on their cell surface they can mediate 

many of the systemic inflammatory effects seen in AAV. TNF-α is required to prime 

neutrophils to express MPO and PR3 on their cell surface [227]. Monocytes can be 

activated in the same fashion, however ANCA antigens were also constitutively 

expressed on the surface of primary monocytes, even in healthy controls [192]. 

Previous work from our research group demonstrated that surface ANCA 

expression was highest in the intermediate monocyte subset, consistent with the 

increase in proportion of this subset [203]. This finding was not replicated by Tarzi 

et al. [223], who did not find any significant differences across monocyte subsets. 

This cohort was smaller and had more MPO-ANCA patients, with additional 

differences in clinical readouts. They did confirm that MPO expression was highest 

in the intermediate subset, but PR3 was expressed at a greater level in classical 

monocytes in this healthy control cohort [223]. Increased PR3 and MPO gene 

transcription in AAV patient monocytes may contribute to this increased surface 

expression [228, 229], but precise mechanisms have yet to be determined. 

 

Other monocyte surface markers may also contribute to their dysfunction in AAV. 

Recent work from Zeisbrich et al. [230] found reduced expression of the 

immunoinhibitory checkpoint programmed cell death ligand-1 (PD-L1) on AAV 

patient monocytes, consistent with ANCA titres. These PD-L1lo monocytes induced 

greater CD4 T cell proliferation and activation. Adhesion molecules facilitate 

extravasation of immune cells during disease flare. Monocyte subsets express 

different levels of adhesion molecules, which facilitates their interaction with 

activated endothelial cells. AAV patient monocytes have generally shown higher 

integrin expression (CX3CR1, CD29, CD18, CD11a, CD11b) than those of healthy 

controls [225, 231-234]. GPA patient monocytes have demonstrated increased 

expression of CD63 (a marker of degranulation) and CD64 (the high-affinity Fc 

receptor for IgG)[235]. CD18 (Integrin beta chain-2) expression was increased on 

monocytes [225] following ANCA stimulation, but CD62L (L-selectin) was decreased 

[231]. This downregulation of CD62L was however disputed in findings from 

Johansson et al. [236] and some other studies have not noted any significant 
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changes [232, 237]. These inconsistencies may be a result of differential 

experimental techniques, or these adhesion molecules may be involved in more 

complex inflammatory signalling in AAV monocytes. We have demonstrated 

increased glucose uptake in ANCA-stimulated monocytes [238]. This presumably 

occurs through the major glucose transporter GLUT-1. While there is evidence 

linking increased glucose uptake with GLUT-1 expression in HIV [135], the role of 

this (and other nutrient receptors) and transporters in AAV monocytes should be a 

focus of future investigations. 

1.4.2.5 Cytokine & Chemokine Production 
As detailed above, monocytes express ANCA antigens on their cell surface and can 

thus be readily activated by ANCA. Monocytes activated by ANCA (or primed by 

other circulating cytokines [183, 239]) adopt a pro-inflammatory phenotype. ANCA-

stimulated monocytes showed increased production of IL-1β, IL-6, IL-8, and TNF-α 

[197, 203, 226, 238, 240]. These cytokines drive vascular inflammation and tissue 

damage. The IL-1β response to anti-MPO is particularly notable. IL-1β inhibition 

protected mice from an anti-MPO induced necrotizing crescentic glomerulonephritis 

[218]. In this model IL-1β production was shown to be dependent on the activity of 

neutrophil serine proteases – cathepsin G, neutrophil elastase, and proteinase 3. In 

humans serum IL-1β showed no correlation with ANCA antibody titre, thus it’s pro-

inflammatory effect may be contained to disease sites [241]. 

 

MCP-1 levels increase following ANCA stimulation, and urinary MCP-1 levels also 

rise during active renal vasculitis [190, 242, 243]. Previous work from our group 

showed increased secretion of CXCL5 from primary monocytes following anti-MPO 

stimulation [244]. This is a neutrophil chemoattractant which may contribute (along 

with other chemokines) to a positive feedback loop for infiltrating innate immune 

cells. Interestingly, anti-MPO stimulation of primary monocytes reduced secretion of 

CXCL10/IP-10. This is a surprising anti-inflammatory response but has been 

previously reported in primary monocytes [197]. Further, AAV was recently revealed 

not to be an interferonopathy [245], adding further intrigue to the role of this 

chemokine in monocyte responses. ROS are also released following ANCA 

stimulation [192, 227], however AAV monocytes have reduced ROS-producing 

capacity compared to healthy controls [236]. Overall, the cytokine storm triggered in 

monocytes following ANCA stimulation drives disease pathogenesis. 
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1.4.3 Monocyte Metabolism in AAV 
Investigations of cellular metabolism in vasculitis have been scarce and mostly 

limited to discoveries in T cells. CD28 signalling controls glycolytic activity of T cells 

in a mouse model of vasculitis [246]. Inhibiting this receptor’s activity abrogated 

vasculitis symptoms and reduced T cell infiltration. CD28 antagonism disrupted T 

cell’s ability to utilise glucose – expression of glycolytic enzymes and surface GLUT1 

were abrogated. Monocytes have been implicated in the pathophysiology of other 

vasculidities [208, 247], however there is currently little evidence of 

immunometabolic effects. 

 

Recent work from our laboratory demonstrated increases in both oxidative 

phosphorylation (OXPHOS) and glycolysis in ANCA-stimulated monocytes (see 

Figure 1.4.2)[238]. Both extracellular acidification rate (ECAR) and oxygen 

consumption rate (OCR) – surrogate measures of glycolysis and OXPHOS, 

respectively – are increased immediately after ANCA stimulation. Similar 

simultaneous enhancement of both glycolytic and oxidative mitochondrial 

metabolism in primary monocytes have been triggered by stimulation with C. 

albicans, Escherichia coli (E. coli), Mycobacterium tuberculosis (M. tb), Bacillus 

Calmette–Guérin (BCG), and Staphylococcus aureus (S. aureus) stimulation [97, 

124, 248]. The effects of ANCAs on monocyte metabolism appear to implicate more 

diverse, synergistic metabolic pathways in manner usually reserved for more 

complex, whole microorganism models. One exception to this observation is the 

metabolic reprogramming induced by innate immune training. Beta-glucan training 

alone activates Warburg metabolism in monocytes, but BCG vaccination resulted in 

upregulation of both glycolysis and OXPHOS [20, 248] similar to ANCA-stimulation. 

This adds further intrigue to the metabolic influence of these autoantibodies. 

 

The differential metabolic effects by microbial stimulation of monocytes can also be 

seen with ANCA. There are disparate metabolic responses to MPO- and PR3-

ANCA, summarised in Table 1.4.1 and detailed in our lab’s recent publication [238]. 

ANCA-activated monocytes show an immediate increase in both glycolysis and 

OXPHOS. This increased OXPHOS is sustained by anti-MPO, whereas anti-PR3 

stimulated cells return to baseline shortly after peaking. Anti-MPO increased basal 

respiration in primary monocytes, as well as maximum and spare respiratory 
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capacity. Despite this OXPHOS was not essential for IL-1β production. Inhibiting 

glycolysis on the other hand did abrogate IL-1β levels. Glucose intake and basal 

glycolysis was increased in both anti-MPO and anti-PR3 stimulated monocytes. 

These metabolic differences were more pronounced in anti-MPO activated cells. 

Indeed, monocytes exhibit a stronger inflammatory response to MPO-ANCA than to 

PR3 [197, 203]. Conversely, Wikman et al. found both ANCAs to upregulate 

monocyte metabolism [231]. This was the case for both monoclonal and polyclonal 

patient-derived antibodies, but not patient sera. MPA and GPA are genetically 

distinct syndromes, typically associated with anti-MPO and anti-PR3 antibodies 

respectively [174, 249, 250]. Different cytokine profiles have also been defined for 

anti-MPO and anti-PR3 positive disease [183], which may account for the 

differences in metabolism between the two autoantibodies and the clinical 

phenotypes. These data point towards a mechanism where monocytes are key to 

MPO+ disease but not PR3+ AAV. The disparities between the metabolic response 

to anti-MPO and anti-PR3 will be a major focus of this work.  

 

In order to exert the pathogenic inflammation characteristic in AAV, immune cells 

migrate to disease sites from the circulation. Macrophages are the most abundant 

cell infiltrates in pulmonary- [251] and renal-dominant AAV [193] and the majority of 

these macrophages are derived from circulating monocytes [252]. As shown by PET 

imaging [253], disease sites in AAV are well perfused to provide ample glucose 

supply. This supports immune cell activation at areas of ANCA-activated 

inflammation. Kidney epithelial cells also increase their glucose uptake and usage 

to fuel the PPP in inflammatory kidney disease, particularly AAV [254]. Further 

subset analyses predicted that this increase in PPP was also linked to 

monocyte/macrophage infiltrates. Determining the metabolic perturbations induced 

by ANCAs and how they impact monocyte function is important to understand the 

role of these cells in AAV pathogenesis and the core focus of this thesis. 
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Figure 1.4.2: Changes in Oxygen Consumption Rate (OCR, A) and Extracellular 

Acidification Rate (ECAR, B) in ANCA-Stimulated Monocytes. Adapted from O’Brien et 

al. [238]  
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Metabolic Process anti-MPO anti-PR3 

Increased glucose intake ↑ ↑ 

IL-1β production glycolysis-dependent ↑ N/A 

IL-1β production OXPHOS-dependent No N/A 

Increased OXPHOS ↑ No 

Increased mitochondrial mass No No 

Increased glycolysis ↑↑ ↑ 

Immediate increase in OXPHOS ↑ ↑ 

Sustained increase in OXPHOS ↑ No 

Rotenone inhibits increased OXPHOS ↑ ↑ 

Immediate increase in glycolysis ↑ ↑ 

Increased mitochondrial ROS ↑ No 

IL-1β production mitoROS-dependent ↑ N/A 

Table 1.4.1: Summary of Disparate Metabolic Effects of anti-MPO and anti-PR3 

ANCAs in Primary Monocytes [238]. Note: IL-1β is not produced by anti-PR3 stimulated 

monocytes. 

1.4.4 Metabolic Perturbations in AAV 
Serum metabolomics has revealed diagnostic biomarkers for other vasculidities 

[255-257] and there have been some serum metabolomics investigations in AAV. 

Misra et al. used NMR spectroscopy to profile the metabolome of AAV patients and 

delineate it from those with Takayasu's arteritis (TAK) and systemic lupus 

erythematosus (SLE) [258]. They found that AAV sera was characterized by 

increased levels of N‐acetyl‐glycoproteins, and lipid metabolites including 

polyunsaturated fatty acids (PUFAs), choline and glycerophosphocholine. A similar 

investigation from Najem et al. [259] profiled AAV patient plasma (and faeces) by 

LC-MS to differentiate acute and chronic AAV. Patients with chronic AAV in 

remission had higher plasma phenylalanine, tyrosine and taurolithocholic bile acid 

compared to newly diagnosed patients. Plasma glycholic and glycodeoxycholic 

acids were strongly associated with active disease in this cohort. Recent work from 

Geetha et al. profiled serum and urine from a small cohort of AAV patients in active 
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disease and remission [260]. This preliminary study found increases in serum amino 

acids, and compounds of carbohydrate and nucleotide synthesis metabolism during 

active disease. Citrate and isocitrate were both decreased in urine and serum in 

active disease compared to remission. Almost all other TCA cycle metabolites were 

increased in serum during active disease, with the exception of oxaloacetate. The 

lack of a control group and the small sample size make it difficult to draw solid 

conclusions from this study. Further, none of these works have provided full details 

of metabolomic methods or analysis as suggested by minimum required reporting 

guidelines [29]. Ideally peer-reviewed publication of these works should include raw 

metabolomics data to allow further interrogation and analysis. 

 

Several urinary protein biomarkers have been discovered in AAV [190, 195], and 

these types of studies can be useful for revealing disease-specific phenomena in 

renal vasculitis. Previous work from our group [261] examined the urine metabolome 

of an MPO-ANCA rat model and its relevance to human AAV patients. Longitudinal 

profiling by NMR identified distinct metabolite profiles during peak disease (day 56) 

and remission. Acute disease was defined by alterations in trimethylamine N-oxide 

(TMAO), α-ketoglutarate (αKG), and citrate, and combining these with existing 

clinical readouts improved discrimination between disease and control animals. 

TMAO, αKG and succinate were also predicative of glomerular injury at sacrifice. 

These findings were used to develop a targeted LC-MS assay to profile human AAV 

patient urine. Here myo-inositol, citrate, maltose, and succinate differentiated 

patients with active renal vasculitis from those in remission, with the myo-

inositol:citric acid ratio proving the strongest biomarker of active disease. ANCA 

specificity (PR3 vs. MPO) did not affect predictive capacity. These findings 

demonstrate the utility for urine metabolomics as an indicator of renal health and 

disease. Whether these urinary metabolite changes are derived from inflammatory 

or epithelial cells should be a focus of future work [254]. 

1.4.4.1 Metabolic Therapies/Metabolites as Potential 
Treatments for AAV 

Metabolic inhibition has been suggested as a method of regulating immune 

responses in autoimmunity [262-264]. Antimetabolite drugs such as azathioprine 

and methotrexate are commonly used in the treatment of autoimmune diseases and 

cancer. These types of treatments should ideally be cell-specific to avoid unwanted 
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systemic side effects. Targeting the appropriate immune cell subset at the 

appropriate disease site [265] will be key to the success of any potential metabolic 

therapeutic. Therefore, a better understanding of the metabolic pathways involved 

in the pathogenesis and maintenance of inflammation in AAV is crucial in identifying 

actionable targets for prospective treatments. 

 

One metabolic manipulator in widespread clinical use is metformin – a 

hypoglycaemic drug used in the treatment of type 2 diabetes. Metformin has also 

been proposed as a treatment for diseases of ageing, including autoimmune 

conditions [266]. This drug can alter phagocytosis, chemotaxis and the rolling 

neutrophil phenotype [267], as well as reducing NFκB, TNF-α and MPO activity at 

disease sites [268, 269]. Metformin treatment can limit monocyte migration and 

differentiation, with additional anti-inflammatory effects on macrophages [270]. 

MTORC1 inhibition by metformin or sirolimus can limit AAV activity both in vitro and 

in vivo [271, 272], but these treatments have not yet seen widespread use in the 

AAV clinic.  

 

Statins are cholesterol lowering drugs which inhibit the enzyme 

hydroxymethylglutaryl-CoA (HMG-CoA) reductase to prevent cardiovascular 

disease. In monocytes statins inhibited the induction of trained immunity, reducing 

TNF-α production by preventing epigenetic reprogramming [21]. This effect was 

salvaged with the addition of mevalonate, the product of HMG-CoA. However, 

mevalonate was unable to reverse the inhibitory effects of respiratory burst by 

statins in ANCA-stimulated neutrophils [216]. Statins could inhibit respiratory burst 

in ANCA-stimulated neutrophils by disrupting ERK-mediated MPO and PR3 

translocation to the plasma membrane [216]. This is the key physiologic process 

identified in priming investigations. A recent retrospective cohort study from Japan 

[273] showed that statin use was associated with reduced relapse risk (HR 0.41; 

95% CI=0.18–0.92; P=0.031) in AAV patients. A case study of a GPA patient found 

that statins significantly reduced proteinuria [274]. Studies of statin use in 

medium/large-vessel vasculitis found inconsistent effects on disease suppression. 

In TAK repression of Th1 activation and IFN-γ expression was mediated by statins 

[275], and these drugs have been proposed as a treatment for Kawasaki Disease 

(KD). A Phase I/IIa trial of atorvastatin [276] found a lower percentage of circulating 
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CD8+ T cells in KD patients who received the drug and with no serious adverse 

events. In the case of AAV, statins limited ANCA activity in vitro [216] and may 

abrogate disease induction with routine use in vivo. These systemic and disease-

site-specific effects make these drugs attractive candidates for adjunctive AAV 

therapy.  

 

Other potential metabolic targets such as nuclear factor E2-related factor 2 (Nrf2) 

[277] and sphingosine 1-phosphate (S1P)[278, 279] represent metabolism-led 

targets which may hold therapeutic value for autoimmune diseases such as AAV. 

However, none of these treatments have yet been tested in in vivo disease models. 

Leflunomide is an immunomodulator used for treatment of RA which inhibits the 

mitochondrial enzyme dihydroorotate dehydrogenase [280]. This drug was recently 

shown to be an effective and safe therapeutic option for MPA and GPA particularly 

after previous treatment failure [281]. The glucose analogue 2-deoxy-D-glucose (2-

DG) can inhibit the first step of glycolysis, thus limiting the potential for cells to utilise 

products of glycolysis. In vitro, 2-DG abrogates IL-1β production in anti-MPO 

stimulated monocytes with increased glucose uptake [244]. This drug has shown 

promising efficacy in a mouse model of polycystic kidney disease [282], and has 

been used in human trials of several cancers [283, 284]. Glucose transport inhibition 

is also an appealing potential treatment strategy for AAV, as both anti-MPO and 

anti-PR3 treated monocytes show increased uptake and utilisation [244]. 

1.5 Project Hypothesis & Aims  
The hypothesis of this thesis is that monocytes contribute to the pathogenic effects 

seen in AAV, and that these inflammatory outputs are facilitated by intracellular 

metabolism in these cells. The aims of this study were:  

1. To optimise LC-MS methods for metabolomic profiling of monocytes and 

parallel inflammatory and metabolic analyses; 

2. Characterise the early metabolic and metabolomic responses to anti-MPO 

and anti-PR3 stimulation in monocytes; 

3. Identify metabolic pathways susceptible to modification to limit the pro-

inflammatory monocyte response to ANCA.  
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Chapter 2: Materials & Methods 
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2.1 Materials Tables 
Name Product Code Company 

Acetonitrile CC34851-2.5L-F Honeywell 

Amino acid standards A9906 Sigma 

β-Nicotinamide 47865 Sigma 

BD FACS Lyse 349202 BD Biosciences 

Bovine Serum Albumin 12877172 
Fisher 

BioReagents™ 

CD14 MicroBeads, human 130-050-201 Miltenyi Biotech 

Cell-Tak 10317081 Thermo Fisher 

Comp Beads 01-1111-42 Thermo Fisher 

CytoTox 96® Non-Radioactive Cytotoxicity 

Assay 
G1780 Promega 

Dextran 31392 Sigma 

D-Glucose 6-phosphate sodium salt  G7879 Sigma 

dNTPs R0181 Thermo Fisher 

DPBS 14190-094 Thermo 

Fluorescent DNA Quantitation Kit 1B1558-KIT VWR Life Science 

Geimsa 48900 Sigma 

Human CXCL10/IP-10 DuoSet ELISA DY266 R&D Systems 

Human IL-1β/IL-1F2 DuoSet ELISA kit DY201 R&D Systems 

Human IL-6 DuoSet ELISA DY206 R&D Systems 

Human TNF-alpha DuoSet ELISA DY210 R&D Systems 

Inosine 5′-monophosphate disodium salt hydrate 57510 Sigma 

L-(+)-Lactic acid 46937 Sigma 

LC-MS Grade Methanol 10607221 Acros Organics 

LC-MS Grade Water 10434902 Fisher Chemical 

L-glutamine 25030-024 Gibco 

Lipopolysaccharide L5418 Sigma 

Lymphoprep 07851 StemCell 

M-MLV Buffer M531A Promega 

M-MLV RT M170B Promega 
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Medronic Acid Deactivator Additive 5191-4506 
Agilent 

Technologies 

Molecular Grade Methanol 326950010 Acros Organics 

Molecular-Grade Ethanol E7023 Sigma 

Monoclonal anti-MPO H87207M 
Meridian 

BioSciences 

Monoclonal anti-PR3 MABT340 Merck Life Science 

myo-Inositol Y0000485 Sigma 

Paraformaldehyde sc-281692 Santa Cruz 

Pierce™ BCA Protein Assay 23227 Thermo Scientific 

Random Hexamer SO142 Thermo Fisher 

RNaseOUT™ 10777019 Invitrogen 

RNaseZAP™ R2020 Sigma 

Roche High Pure RNA Isolation Kit 11828665001 Roche 

Seahorse XFe24 FluxPak 102340-100 Agilent 

Sodium Bicarbonate S5761 Sigma 

Sodium Hydroxide S5881 Sigma 

Sodium Pyruvate 11360-039 Gibco 

SYBR™ Green A25742 Thermo Fisher 

TCA Cycle Metabolite Library ML0010 Sigma 

TMB T0440 Sigma 

Trimethylamine N-oxide 317594 Sigma 

Tween-20 11417160 MP Biomedicals 

XF calibrant solution 100840-000 Agilent 

Table 2.1.1: Reagents Used in this Work 

 

Buffer Components 

1% BSA 1mg/ml BSA in PBS 

2% Dextran 2mg/ml dextran in 

Blocking Buffer PBS + 20% FCS 

cRPMI RPMI + 10%FCS + 100U/ml streptomycin + 1mg/ml penicillin 
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ELISA Wash Buffer PBS + 0.05% Tween-20 

FACS Buffer PBS + 0.1% sodium azide + 3% FCS 

MACS Buffer PBS + 2mM EDTA + 0.5% BSA 

Phosophoproteomics 

Lysis Buffer 

0.2ml NA2CO3, 1.8ml H2O, 0.4ml sodium pervanedate, 80μl 

protease inhibitor, 0.2ml phosphatase inhibitor) 

RNAse-ZAP Alternative 

Buffer 
0.1% NaOH solution with 1% triton X-100 and 0.5% SDS 

XF+++ Media 
XF media + 5.5mM D-Glucose + 4mM L-glutamine + 1mM sodium 

pyruvate 

Table 2.1.2: Buffers Used in this Work 

 

Name Product Code Clone Company 

Anti-MPO mAb H87207M B3147M Meridian 

Anti-PR3 mAb MABT340 MCPR3-2 Merck 

Isotype mAb CBL610 1E2.2 Merck 

Table 2.1.3: Antibodies Used in this Work 

 

Target Antigen Fluorochrome Clone 
Species 

Targeted 

Product 

Code 
Company 

CD14 PE-Vio770 TÜK4 Human 130-096-628 Miltenyi Biotec 

MPO PE 2C7 Human MCA1757PE 
Bio-Rad 

Laboratories Inc 

PR3 FITC PR3G-2 Human ab65255 Abcam 

Fixable Viability Dye eFluor450 N/A Human 65-0863-14 eBioscience™ 

CD16 AlexaFluor 488 3G8 Human 302019 BioLegend, Inc. 

CD54 APC REA266 Human 130-103-910 Miltenyi Biotec 

 Table 2.1.4: Flow Cytometry Antibodies Used in this Work 

 

Gene Sense Primer 5’-3’ Antisense Primer 5’-3’ 

CXCL5 TGGACGGTGGAAACAAGG CTTCCCTGGGTTCAGAGAC 

CXCL10 
GAAGCTAGCATGAATCAAACTGC

CATTCTGATT 

GACGAATTCTTAAGGAGATCTTTT

AGACCTTTCC 

OSM CTCGAAAGAGTACCGCGTG TCAGTTTAGGAACATCCAGGC 

IL10RA GCCGAAAGAAGCTACCCAGTGT GGTCCAAGTTCTTCAGCTCTGG 

IL-1β GAGCAACAAGTGGTGTTCTCC AACACGCAGGACAGGTACAG 
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NLRP3 AAGGGCCATGGACTATTTCC GACTCCACCCGATGACAGTT 

ASC CGCGAGGGTCACAAACGT TGCTCATCCGTCAGGACCTT 

18S CTACCACATCCAAGGAAGCA TTTTTCGTCACTACCTCCCCG 

Table 2.1.5: Primer Sequences used in RT-qPCR Experiments 

 

Software Version Manufacturer 

Excel 16.43 Microsoft 

FACSDivaTM 8.0.2 BD BioSciences 

G*Power 3.1.9.6 
Heinrich-Heine-Universität 

Düsseldorf 

GraphPad Prism 9.0.0 GraphPad Software LLC 

ImageJ 1.53c National Institutes of Health, USA 

Kaluza 2.1 Beckman Coulter, Inc. 

MassHunter Mass Profiler 

Professional 
15.1 Agilent Technologies, Inc. 

MassHunter ProFinder 10.0 Agilent Technologies, Inc. 

MassHunter Qualitative Analysis 10.0 Agilent Technologies, Inc. 

ND-8000 Software 1.0.3 
Coleman Technologies, Inc for 

NanoDrop Technologies 

Pathways to PCDL B.08.00 Agilent Technologies, Inc. 

PCDL Manager B.08.00 Agilent Technologies, Inc. 

Gen5™ Microplate Reader and 

Imaging Software 
N/A BioTek Instruments, Inc. 

SoftMax® Pro 5.4.1 Molecular Devices 

QuantStudio™ Real-Time PCR 

Software 
1.3 

Applied Biosystems by Thermo 

Fisher Scientific 

Wave 2.6.1.53 Agilent Technologies, Inc. 

Table 2.1.6: Software Used in this Work  
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2.2 Isolation and Stimulation of Primary Monocytes from 
Peripheral Blood 

2.2.1 Blood Collection 
Blood samples were routinely obtained from two primary sources: buffy coats, and 

haemochromatosis whole blood donations. Buffy coat samples were obtained 

through the Irish Blood Transfusion Service (IBTS) with the appropriate clinical 

indemnity approval. No personal or clinical information about donors is available 

from these samples. Patients attending the outpatient’s haemochromatosis clinic in 

St. James’ Hospital were asked to donate samples with the appropriate ethic 

approvals. Whole blood donations were collected in CPDA-1 anti-coagulant bags 

(Fannin Scientific, MSE6500L) from consenting donors who were free from known 

infections and disclosed their age and sex. 

2.2.2 Peripheral Blood Mononuclear Cell (PBMC) Preparation 
PBMCs were isolated by density gradient centrifugation [285]. For buffy coat 

samples blood was diluted 1:1 with phosphate buffered saline (PBS) before layering 

over Lymphoprep™ (StemCell Technologies, 07851) at a ratio of 1:2 

Lymphoprep:diluted blood. For haemochromatosis donors, blood was added to 2% 

dextran (20mg/ml in PBS), mixed thoroughly, and incubated for 30 mins at room 

temperature. The supernatant layer then was removed and layered onto 

Lymphoprep™ at a 1:3 ratio. Layered bloods were spun at 400g for 25 mins with 

minimal acceleration and no brakes. The plasma layer was aspirated and discarded, 

and the PBMC layer was aspirated and transferred to a new 50ml falcon tube. These 

tubes were filled to 50ml with PBS and centrifuged at 800g for 5 mins. Supernatant 

was discarded and cells were again washed with 50ml PBS before being spun at 

400g for 10 mins. Supernatant was again removed, and cells were transferred to a 

new 15ml falcon. Cold MACS buffer (PBS + 2mM EDTA + 0.5% BSA) was added 

up to 15ml and tube spun at 400g for 7 mins. 

2.2.3 Monocyte Isolation 
Monocytes were isolated from PBMCs by CD14+ magnetic bead isolation [286]. 

After the final centrifugation step for PBMC isolation supernatant was removed and 

cells were resuspended in 2.9ml MACS buffer. 100μl of anti-CD14 microbeads 

(Miltenyi Biotec,130-050-201) were added and cells were incubated for 15 min at 

4°C, mixing once. 1ml MACS buffer was added and cells were spun for at 400g for 

7 min. PBMCs were resuspended in 3ml MACS buffer and CD14+ cells were 
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isolated using an LS column (Miltenyi Biotec, 130-042-401) and pre-separation filter 

(Miltenyi Biotech, 130-041-407) on a quadroMACS separator (Miltenyi Biotec, 130-

090-976). The column and filter were washed with 3ml of MACS buffer before and 

after adding PBMCs. The column was removed from the separator and bound cells 

were eluted in 5ml MACS buffer. Cells were counted by Trypan blue exclusion and 

concentration adjusted to 1x106/ml in complete RPMI (RPMI + 10% FCS + 100U/ml 

streptomycin + 1mg/ml penicillin) or appropriate buffer. 

2.2.4 Monocyte Stimulation 
Monocytes were seeded at 1x106 cells/ml in either 96- or 24-well formats with 200μl 

or 1ml of cell suspension respectively. Cells were left to rest for at least 30 mins 

before stimulation at 37°C with 5% CO2. Cells were stimulated with 5μg/ml of anti-

MPO (Meridian BioSciences, H87207M) or anti-PR3 (Merck, MABT340). Negative 

controls were stimulated with serum-free RPMI (No Stimulation) and positive 

controls with 200ng/ml LPS (Sigma, L5418). Each stimulant was measured at least 

in triplicate and cells were stimulated for 4 hours (unless otherwise stated) at 37°C 

with 5% CO2. At the end of the stimulation plates were spun at 400g for 7 mins and 

supernatants removed for cytokine or LDH analysis as described in Sections 2.3 

and 2.4 respectively. Cells were processed for either RT-qPCR or metabolomic 

analysis as described in Sections 2.6 and 2.9 respectively. 

2.3 Enzyme-Linked Immunosorbent Assay (ELISA) 
DuoSet ELISA kits (R&D Systems) were used to measure cytokine production in 

supernatants from ANCA-stimulated monocytes. Each kit contained capture 

antibody, recombinant cytokine standard, biotinylated detection antibody, and 

streptavidin-horseradish peroxidase (HRP) solution. Stock reagents were diluted 

based on the manufacturer’s instructions in PBS or distilled water (H2O). 

 

Flat-bottomed high binding 96 well plates (VWR, 655061) were coated with 50μl per 

well of diluted capture antibody, covered, and incubated overnight at 4°C. The 

ELISA wash step consisted of submersion in ELISA wash buffer (PBS + 0.05% 

Tween-20 [MP Biomedicals, 11417160]) and quick removal of buffer into a waste 

sink a minimum of three times. Plates were then dried completely on blotting paper. 

Plates were blocked with 200μl fresh 1% BSA (1mg/ml BSA in PBS) for 2 hours at 

room temperature, then washed. Recombinant cytokine standards were serially 
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diluted in 1% BSA to develop a 7-point standard curve with a negative blank. 

Supernatants were diluted 1:5, 1:25, and 1:50 for TNF-α (DY210), IL-1β (DY201), 

and IL-6 (DY206) respectively and undiluted for IP-10 (DY266) assays. 50μl 

standards, samples or blanks were added to the plate in duplicate/triplicate. Plates 

were covered and incubated overnight at 4°C. After washing, 50μl diluted detection 

antibody was added to each well and plates were covered and incubated at room 

temperature for 2 hours. After washing, 50μl diluted HRP solution was added to 

each well and plates were incubated for 20min in the dark at room temperature. 

Plates were washed and 40μl 3,3’,5,5’ – tetramethylbenzidine (TMB, Sigma, T0440) 

was added to each well. Plates were incubated in the dark until appropriate colour 

development in the standard curve (minimum 20 mins). The assay was stopped by 

adding 25μl 2M H2SO4 to each well. Absorbances from each well were immediately 

read at 450nm using a VersaMax™ Microplate Reader (Molecular Devices). 

Standard curves were interpolated to determine unknown sample concentrations 

and graphed using GraphPad prism software (Version 9.0, GraphPad Inc.). 

2.4 Lactate Dehydrogenase (LDH) Cytotoxicity Assay 
Quantification of LDH in post-stimulation cell supernatants was performed using the 

CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, G1780). Assay Buffer 

was thawed and warmed to room temperature in a water bath. Reagent Buffer was 

prepared by adding 12ml Assay Buffer to a new vial of Substrate Mix and vortexing 

thoroughly until dissolved completely. LDH Positive Control and cell-free cRPMI 

acted as positive and negative controls for this assay, respectively. Tubes 

containing cell supernatants were thawed, vortexed, and centrifuged at 2,000g for 

5 mins. 40µl of supernatant (in duplicate) was mixed with 40µl of Reagent Buffer in 

a 96-well plate. The plate was rocked gently for 5-10 mins at room temperature until 

colour developed fully in the LDH Positive Control. 40µl of stop solution was added 

to each well and the assay plate was spun at 2,000g for 5 mins before being read 

at 490nm with a VersaMax™ Microplate Reader (Molecular Devices). Results were 

reported as percent (%) cytotoxicity. The percentage of cytotoxicity was calculated 

by considering the OD value for the negative control as 0% and the OD value for 

the positive control as 100% across all assay plates. A two-point, straight-line 

standard curve was drawn, and results were interpolated for each sample taking the 

mean of duplicate values.  
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2.5 Analysis of Protein Concentrations using Pierce™ 
Bicinchoninic Acid (BCA) Protein Assay 

Protein levels in metabolite fraction and cell pellets were measured using the 

Pierce™ BCA Protein Assay (Thermo Scientific, 23227). Standards were prepared 

by serial dilution of bovine serum albumin (BSA) in 80% American Chemical Society 

(ACS) reagent grade MeOH (Acros Organics, 10607221) with a top standard of 

200µg/ml BSA (300nM) and a negative blank. BCA Working Reagent was prepared 

by diluting BCA Reagent B 1:50 with BCA Reagent A. 9.6ml of Working Reagent is 

required for a single 96-well plate, and so 200µl of BCA Reagent B was mixed with 

9.8ml of BCA Reagent A in a 15ml falcon tube to allow sufficient volume. Residual 

protein from metabolite extractions was resolubilised with vigorous vortexing in 1X 

Fluorescent DNA Assay Buffer (see Section 2.10) and dissolved overnight in a heat 

block @37°C. 12.5µl of each sample was added to the relevant wells of a 96-well 

plate in duplicate/triplicate. 100µl of BCA Working Reagent was added to each well 

and the plate was mixed briefly on a plate shaker. The plate was sealed tightly with 

parafilm and left to incubate at 37°C for 18 hours. After cooling to room temperature, 

the absorbance was measured at 562nm and 595nm with an Epoch™ Microplate 

Spectrophotometer (BioTek Instruments, Inc.). 

2.6 Analysis of Gene Expression by Real-Time 
Quantitative Reverse Transcription PCR (RT-qPCR) 

2.6.1 RNA Extraction 
RNA was extracted from cells using the Roche High Pure RNA Isolation Kit (Roche, 

11828665001). The kit contents are lysis/binding buffer, recombinant DNase I, 

DNase incubation buffer, wash buffer I & II, elution buffer, high pure filter tubes, and 

collection tubes. Before the first use of each kit, DNase I was dissolved in 550μl of 

elution buffer and vortexed. Wash buffers I and II were mixed with 20ml and 40ml 

of molecular-grade ethanol, respectively, and mixed well. Before beginning the 

experiment, all surfaces and materials were sprayed thoroughly with RNaseZAP™ 

(Sigma, R2020) and all materials were DNase and RNAse free. 

 

Approximately 9x105 monocytes were used for 24-well plate stimulations and 2x105 

cells for 96-well stimulations. Cells were stored in Eppendorfs for 24-well 

stimulations or in the stimulation plate in the case of 96-well experiments. High pure 

filter tubes were inserted into collection tubes and both components (tube units) 
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labelled appropriately. Cells were resuspended in 200μl PBS and transferred to the 

correspondingly labelled tubes. 200μl lysis/binding buffer was added to each high 

pure filter tube and vortexed. Tube units were centrifuged at 8,000g for 15 seconds 

and waste collected in the bottom of the collection tube discarded. For each sample 

10μl of DNase I was added to 90μl of DNase incubation buffer in a sterile tube. 100μl 

of the solution was gently pipetted onto the glass filter fleece of the upper tube 

reservoir of each tube unit and vortexed. Tube units were incubated for 15 mins at 

room temperature then washed with 500μl of wash buffer I and centrifuged at 8,000g 

for 15 seconds. Waste was discarded and the wash step repeated. 200μl of wash 

buffer II was added to the upper tube reservoir of each tube unit and tube units were 

centrifuged at 13,000g for 2 mins. The collection tube was removed and replaced 

with a sterile 1.7ml RNase & DNase-Free microcentrifuge tube. 75μl of elution buffer 

was added to the upper reservoir of the filter tube and tube assemblies were 

centrifuged at 8,000g for 1 minute. Eluted RNA was immediately assessed for purity 

and used to generate cDNA, or stored at −80°C. 

2.6.2 RNA Concentration and Purity Analysis 
RNA concentration in each sample was measured using the NanoDrop™ 8000 

Spectrophotometer with ND-8000 Software Version 1.0 (Thermo Fisher Scientific). 

1μl of extracted RNA was pipetted onto the sample loading dock and sample 

concentration measured at 260 and 280nm. Samples were diluted with sterile 

distilled water (SDW) to the lowest concentrated sample in the cohort. The 

260nm/280nm absorbance ratio was measured to assess purity of RNA with a 

threshold of ≥1.9 considered acceptable. 

2.6.3 cDNA Synthesis 
Before beginning the experiment, all surfaces and materials were sprayed 

thoroughly with RNaseZAP™ and all materials were DNase and RNAse free. Ice 

cold reagents were added to 200μl PCR tubes as per the template in Table 2.6.1 

below for a total of 10µl cDNA (sufficient for 6 experiments). Cells were vortexed 

and spun briefly before being added to a PCR Thermocycler (MJ Research PTC-

200). Tubes were heated to 25ºC for 10mins, 42ºC for 60mins, 95ºC for 3mins, and 

held at 4ºC until use. cDNA samples were diluted 1:1 with SDW and vortexed before 

storage at -20ºC. 
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Reagent 
Stock 

Concentration 

Volume 

(µl) 

Final 

Concentration 

RNA Template Variable 5.00 ~2.5µg 

M-MLV Buffer (Promega, M531A) 5X 2.00 1X 

dNTPs (R0181, Thermo Fisher) 10mM 2.00 2mM 

Random Hexamer (SO142, Thermo 

Fisher) 
100µM 0.50 5µM 

RNaseOUT™ (Invitrogen, 

10777019) 
40U/μL 0.25 1U 

M-MLV RT (Promega M170B) 200U/µL 0.25 5U 

Table 2.6.1: Template of reagents for cDNA synthesis 

2.6.4 RT-qPCR Primer Design 
Primer sequences for RT-qPCR were identified using the U.S. National Library of 

Medicine, National Centre for Biotechnology Information (NCBI) Gene Database 

[287]. Primers were designed based on guidelines described by Thornton & Basu 

[288]. PCR product size was set to 80-150 base pairs (bp), and primers had to span 

an exon/exon junction. Primer melting temperatures (Tm) were set to 63-64°C 

where possible and expanded to 59-68°C with a maximum Tm difference of 1°C 

between forward and reverse where no results were available. Primer length was 

limited to 18-24bp and GC clamp (maximum ΔG of the 5 bases from the 5′ end of 

the primers) limited to <2. Results were reviewed and primers with fewer similar 

entities (excluding isoforms) were prioritised. Other favourable primer 

characteristics included a maximum of 4 dinucleotides and 4 runs, annealing 

temperature between 59 and 60°C, and a Mg2+ concentration between 3-6mM 

MgCl2. Primers were synthesised by Integrated DNA Technologies, Inc., diluted with 

SDW upon receipt and stored at -20°C. A list of forward and reverse primers used 

in the course of this work can be found in Table 2.1.5. 

2.6.5 RT-qPCR Protocol 
Before beginning the experiment, all surfaces and materials were sprayed 

thoroughly with RNaseZAP™ and all materials were DNase and RNAse free. 2μl of 

diluted cDNA samples were added to the appropriate wells of a 384-well PCR plate 

(Fisher scientific, AB1384) and the plate was centrifuged briefly to pool liquid at the 

bottom of the well. 4μl of SYBR™ Green (Thermo Fisher, A25742) and 3μl SDW 

was added to each well, and 1μl of the relevant diluted forward and reverse primers 



   
 

 
 

67 

added to the appropriate wells. The plate was covered with an adhesive PCR plate 

seal and centrifuged briefly. Samples were run on an Applied Biosystems™ 384-

well QuantStudio™ 5 Real-Time PCR System in Standard run mode. The method 

was set as follows: 

● Hold Stage 

○ Step 1: 50ºC for 2mins, 1.6ºC/sec 

○ Step 2: 95ºC for 2mins, 1.6ºC/sec 

● PCR Stage – 40 cycles 

○ Step 1: 95ºC for 15sec, 1.6ºC/sec 

○ Step 2: 60ºC for 1min, 1.6ºC/sec, Data Collection on 

● Melt Curve Stage – Continuous 

○ Step 1: 95ºC for 15sec, 1.6ºC/sec 

○ Step 2: 60ºC for 1min, 1.6ºC/sec 

○ Step 3: 95ºC for 15sec, 0.015ºC/sec, Data Collection on 

The expression of mRNA was calculated using 2-ΔΔCT method [289] using 18S as a 

reference control gene. Briefly, the difference between the target gene expression 

and 18S rRNA expression was used to calculate the ΔCt and normalise for variation 

in cDNA concentrations between samples. The expression of each target gene in 

the negative control (unstimulated) group was then compared to the treatment 

groups to determine ΔΔCt. The log-transformed fold change of this value (i.e., 2-

ΔΔCT) was then calculated.  

2.7 Preparation of Histopathology Cell Slides 

2.7.1 Cytospin Protocol 
Cytospins were carried out on dextran sediment (mixed cell population), freshly 

isolated monocytes (T0), and stimulated monocytes after 4 hours (T4; No 

Stimulation, LPS, anti-MPO, anti-PR3). Labelled slides were loaded onto clips and 

aligned with filter paper and funnels. 100μl of cells were loaded into the relevant 

funnels and spun for 2 mins at 700rpm in a Shandon Cytospin 3 Centrifuge (Thermo 

Scientific). Slides were removed and air dried on a rack before staining. 

2.7.2 Giemsa Staining 
Once dry slides were fixed by emersion in molecular biology grade MeOH (Acros 

Organics, 326950010) for 10 mins and again air dried. Giemsa solution (Sigma, 

48900) was diluted 1:20 in dH2O and cells were completely covered in diluted 
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Giemsa solution for 45 mins. Slides were carefully rinsed with distilled water and 

dried. A small drop of mounting solution (Sigma, 06522) was added over the cells 

and a coverslip carefully lowered over it. Slides were set at room temperature 

overnight and stored at 4°C before analysis. 

2.7.3 Cell Size Analysis Using ImageJ 
Slides were photographed using a Nikon Eclipse E200 microscope with a OptixCam 

Summit Series camera attachment. Photographs were taken using the PhotoView 

software (Version 7) at 10X and 40X magnification. Cell clumps were defined as a 

group of >5 cells where each cell is in direct contact with at least one other cell in 

the clump. Clumps were counted in three separate, distinct slide sections and 

totalled. For each treatment per biological replicate. Clumps were correlated with 

cytokine production and intracellular metabolite levels  

2.8 Flow Cytometry Analysis of Cell Surface Markers 

2.8.1 Staining of Cell Surface Markers on Immune Cells 
Fluorochrome-conjugated monoclonal antibodies (mAb) specific for human CD14, 

CD16, CD54, MPO, and PR3 were used in various experiments. Various live/dead 

cell markers were also incorporated as specified. A full list of mAbs used for flow 

cytometry are available in Table 2.1.4. Controls incorporated into flow cytometry 

experiments included unstained controls, fluorescence-minus-one (FMO) controls, 

and live/dead controls. Unstained controls include no fluorochrome antibodies, FMO 

controls involve omitting a specific fluorochrome from the antibody panel from the 

specified sample, and live dead controls include a population of dead cells stained 

with the appropriate live/dead marker. Cells were killed by exposing to high 

temperatures (>60 °C) in a heatblock or water bath for up to 10 mins. Cells were 

acquired on a FACSCanto II flow cytometer using BD FACSDivaTM software, and 

results analysed using Kaluza software (Version 2.1, Beckman Coulter, Inc.). Cells 

were analysed immediately after staining where possible and always within 48 

hours. 

2.8.2 Mixed Cell Analysis 
For analysis of mixed blood cell populations whole blood or dextran isolated cells 

(see Section 2.2) were used as specified. 100µl of whole blood or dextran was 

added to relevant FACS tubes. Cells were stained in the appropriate fluorescent 

antibody cocktail for 30 mins in the dark. Red blood cells were lysed with 1ml of 
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diluted BD lysis buffer (1X diluted in water, 349202, BD Biosciences), vortexed and 

left to rest for 10 mins. Cells were washed by adding 500µl FACS Buffer, vortexing 

briefly, centrifuging at 400g for 5 mins, and removing supernatant. This wash 

procedure was completed a total of 3 times. Where a live/dead stain was used in 

experiments, PBS was used in place of FACS buffer as specified. Cells were 

resuspended in 100-200µl PBS/FACS Buffer or 2% paraformaldehyde (PFA, Santa 

Cruz, sc-281692) for delayed analysis. Where cells had been preserved in 2% PFA 

they were washed twice before being resuspended in 100-200µl PBS/FACS Buffer.  

2.8.3 Isolated Monocyte Analysis 
Isolated monocytes were analysed for purity, viability, and surface marker 

expression. 1x106 isolated monocytes in 1ml of cRPMI were added to relevant 

FACS tubes. Cells were washed by adding 500µl FACS Buffer, vortexing briefly, 

centrifuging at 400g for 5 mins, and removing supernatant. This wash procedure 

was completed a total of 3 times before cell staining. Cells were stained in the 

appropriate fluorescent antibody cocktail for 30 mins in the dark. Where a live/dead 

stain was used in experiments, PBS was used in place of FACS buffer as specified. 

After the staining procedure cells were washed 3 times and resuspended in 100-

200µl PBS/FACS Buffer or 2% paraformaldehyde (PFA, Santa Cruz, sc-281692) for 

delayed analysis. Where cells had been preserved in 2% PFA they were washed 

twice before being resuspended in 100-200µl PBS/FACS Buffer.  

2.8.4 Flow Cytometry Analysis 
Cells were acquired on a FACSCanto II flow cytometer using BD FACSDivaTM 

software. Compensation controls were included in all experiments with appropriately 

stained OneComp eBeads™ (01-1111-42, Thermo Fisher). After acquisition .FCS 

files were imported into Kaluza software for analysis. Getting strategies are reported 

in the relevant results sections. Results are reported as cell percentages (%) and 

median fluorescence intensity (MFI) as specified. 
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2.9 LC-MS Metabolomics 

2.9.1 Principles of Mass Spectrometry 
The primary technology applied for metabolomic profiling of ANCA-stimulated 

monocytes in this work is liquid chromatography-mass spectrometry (LC-MS). LC-

MS is a highly sensitive, specific, and reproducible technique for metabolomic 

analyses. The basic principle of mass spectrometry (MS) is to generate charged 

ions, and to detect these ions (and their fragments) based on their mass-to-charge 

ratio (m/z). In this work we have employed quadropole time-of-flight (Q-ToF) MS, 

which accelerates ions through a high voltage, with their velocity dependant on their 

m/z value. Ions are generated using an electrospray ionisation source, well-suited 

for metabolomic analyses [290]. Modern Q-ToF analysers can detect compounds 

across five orders of magnitude down to the picomolar range, while also allowing 

effective identification of molecular formula.  

 

Coupling mass spectrometry to a liquid (see Figure 1.2.1) or gas chromatography 

system allows improved separation of ion species, more reliable identification of 

compounds, and rigorous quantification (as the method allows). Metabolite 

abundances are quantified by measuring the area underneath a chromatographic 

peak, and peak shape can be optimised by careful manipulation of mobile phases, 

flow rates, and column choice [24]. Improving chromatographic resolution with a 

mobile phase gradient also can allow effective separation of isomers.  

 

Metabolites are a chemically and structurally diverse set of compounds, and 

because of this diversity, there is no single LC-MS method to completely account 

for all metabolites present in a biological system. Thus, methods must be 

appropriately developed and optimised for the specific application with 

consideration for the experimental design and aims, starting material, metabolites 

of interest, and desired outputs (qualitative/quantitative). 

2.9.2 LC-MS Sample Preparation 
An optimised LC-MS sample preparation method was developed for metabolite 

extraction of ANCA-stimulated monocytes. Additional validation of optimised sample 

preparation methods was completed in a cohort of ANCA-stimulated monocytes and 

PBMCs. All reagents were ACS Reagent Grade suitable for HPLC analysis 
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Experiments detailing the process for determining optimum metabolite extraction 

are described fully in Chapter 3.  

 

Following cell stimulation (see Section 2.2), 5 million treated monocytes were 

centrifuged in 1.5ml Eppendorf tubes at 400g for 7 mins. Supernatants were 

removed completely, and samples were quenched on dry ice. 100μl of ice cold 80% 

ACS reagent-grade MeOH (Acros Organics, 10607221) was added, and cells were 

vortexed for 30secs, then sonicated in an ice bath for 1min, and vortexed for another 

30secs. Samples were centrifuged at 16,000g for 10 mins at 4°C and the metabolite 

fraction (supernatant) removed for LC-MS analysis. The extraction procedure was 

repeated twice for a final metabolite fraction volume of approximately 200μl. 

Samples were stored at -80°C until analysis. All reagents used for LC-MS 

experiments were ACS reagent-grade. 

2.9.2.1 Pooled Quality Control Sample Preparation 
Pooled Quality Control (PooledQC) samples are a type of control measure for LC-

MS experiments whereby small aliquots of each biological sample to be studied are 

combined [64]. In these metabolomic profiling experiments, 5μl of metabolite 

fraction for each sample was added to an Eppendorf tube immediately after 

metabolite extraction. Samples were stored at -80°C until analysis. 

2.9.2.2 Synthetic Standard Sample Preparation 
Synthetic chemical standards are used for definitive identification of metabolites 

using parallel analysis of mass, retention time and fragmentation mass spectra. A 

synthetic standard mix containing amino acids (A9906, Sigma), TCA cycle 

intermediates (ML0010, Sigma), and other metabolites of interest at a concentration 

of 50µM was formulated as outlined in Table 2.9.1.   
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Name 
Product 

Code 

Molecular 

Weight 

Stock Concentration 

(mg/ml) 

L-(+)-Lactic acid 46937 90.08 100.00 

B-Nicotinamide 47865 662.42 25.30 

Inosine 5’-Monophosphate 57510 410.19 35.10 

Trimethylamine N-oxide 317594 75.11 52.10 

1-Methyl-L-histidine 

A9906 

169.18 

500μM 

3-Methyl-L-histidine 169.18 

Cystathionine 222.26 

DL-β-Aminoisobutryic acid 103.12 

Ethanolamine 61.08 

Glycine 75.07 

Hydroxy-L-proline 131.13 

L-Alanine 89.09 

L-Anserine 240.26 

L-Arginine 174.20 

L-Aspartic acid 133.11 

L-Carnosine 226.23 

L-Citrulline 175.20 

L-Creatinine 113.12 

L-Cystine 240.30 

L-Glutamic acid 147.13 

L-Histidine 155.15 

L-Homocystine 135.18 

L-Isoleucine 131.17 

L-Leucine 131.17 

L-Lysine 146.19 

L-Methionine 149.21 

L-Ornithine 132.16 

L-Phenylalanine 165.19 

L-Proline 115.13 
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L-Serine 105.09 

L-Threonine 119.12 

L-Tryptophan 204.23 

L-Tyrosine 181.19 

L-Valine 117.15 

L-α-Amino-n-butyric acid 103.12 

Sarcosine 89.09 

Taurine 125.15 

Urea 60.06 

β-Alanine 89.09 

γ-Amino-n-butyric acid 103.06 

δ-Hydroxylysine 162.19 

Glucose 6-Phosphate G7879 282.12 30.10 

Acetyl coenzyme A sodium salt 

ML0010 

809.57 

10.00 

Citric acid monohydrate 210.14 

DL-Isocitric acid trisodium salt 

hydrate 
258.07 

L-(−)-Malic acid 134.09 

Oxaloacetic acid 132.07 

Sodium fumarate dibasic 160.04 

Sodium pyruvate 110.04 

Sodium succinate dibasic 

hexahydrate 
270.14 

Succinyl coenzyme A sodium 

salt 
867.61 

α-Ketoglutaric acid disodium 

salt hydrate 
190.06 

myo-inositol Y0000485 180.16 30.60 

Table 2.9.1: Contents of Synthetic Standard Mixture used for Quality Control Across 

MS Experiments. All metabolites were adjusted to a concentration of 50µM. 
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2.9.3 LC-MS Metabolomic Profiling of ANCA-Stimulated 
Monocytes 

A number of LC-MS methods were tested throughout the course of this work. A 

summary of the LC and MS parameters used in various experiments is provided in 

Tables 2.9.2 and 2.9.3, respectively, and described in additional detail in the 

corresponding results sections. The core LC-MS metabolomics method used is 

described by Hsiao et al. [42] and detailed below. 

 

ANCA-stimulated monocytes were stimulated as described in Section 2.2 and 

processed as described above (Section 2.9.2). Samples were analysed on an 

Agilent 6546 Q-TOF (G6546A) paired with an Agilent 1290 Infinity LC. A 150mm × 

2.1mm InfinityLab Poroshell 120 HILIC-Z column (683775-924, Agilent 

Technologies) was used and column temperature maintained at 25°C. Mobile phase 

A consisted of 10 mM ammonium acetate, pH 9.0 in water plus 5µM deactivator 

additive (medronic acid, 5191-4506, Agilent); and mobile phase B was 10 mM 

ammonium acetate, pH 9.0 in 90% ACN for ESI-. Medronic acid was included in 

Mobile phase B for the Primary Profiling cohort, but omitted for the Validation (see 

Section 5.2.3.1) For the positive ionisation mode ammonium acetate was replaced 

with 0.1% formic acid and pH was adjusted to 3.0. Flow rate was 0.25 mL/min and 

an injection volume of 2µl was used. After sample injection, the column was held at 

90% solvent B for 2min before the solvent A gradient with was applied. The gradient 

elution profile was from 90 to 60% B for 10min followed by washing with 60% B for 

3min. The column was then allowed to re-equilibrate with 90% B for 8min prior to 

subsequent analysis. MS data were acquired with a mass range of 40−1000m/z and 

an acquisition rate of 2 spectra per second. The instrument was operated in negative 

mode and positive mode on back-to-back runs under the same source conditions. 

Full details of MS conditions for the metabolomic profiling can be found in Table 

2.9.3. Both sample runs included PooledQC samples, synthetic metabolite 

standards for amino acids (A9906, Sigma), TCA cycle metabolites (ML0010, 

Sigma), lactic acid (46937, Sigma), myo-inositol (Y0000485, Sigma) and 

trimethylamine N-oxide (TMAO, 317594, Sigma), and extraction blanks. A slightly 

modified version of this LC-MS method was applied to the Secondary cohort (n=24). 

Here the medronic acid deactivator additive was omitted from Mobile Phase B and 

only added to Mobile Phase A in the Secondary cohort. The gradient was also 
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modified slightly as shown in Figure 4.3.8. Additionally, all other source conditions 

were identical and both methods performed comparably.  

2.9.4 LC-MS Data Analysis 
The core LC-MS analysis technologies employed for this work were from the Agilent 

MassHunter suite from Agilent Technologies, Inc (Figure 2.9.1). The primary pre-

processing software was Agilent MassHunter ProFinder (B.10.0), which was used 

for targeted and untargeted feature finding. Additional analyses of chromatography 

and mass spectra were completed using Agilent MassHunter Qualitative Analysis 

(B.10.0). For targeted analyses, personal compound database libraries (PCDLs) 

were built using PCDL Manager (B.08.00). Metabolite information was obtained 

from the Agilent MassHunter METLIN Metabolomics Database and Library. This is 

a highly curated and comprehensive collection of over 250,000 metabolites, lipids, 

and related compounds derived from the METLIN MS database [68]. This custom 

PCDL contains accurate, high-resolution MS spectral and isotopic data acquired 

using an Agilent Q-TOF MS. PCDLs for targeted analyses were updated with 

retention times (RTs) calculated from the appropriate metabolite standards. 

Metabolite identification, data visualisation, and statistical analyses (see Section 

2.9.10) was carried out using Mass Profiler Professional (MPP, Agilent 

Technologies Version 15.1). Full details of data analysis workflows are provided in 

the appropriate results sections. 



Method ID Column Mobile Phase A Mobile Phase B 

Flow 

Rate 

(mL/min) 

Gradient 

(Time, %Mobile A / 

%Mobile B) 

Column 

Temp (°C) 

Injection 

Volume (μl) 

SPO C18 

ESI+ 

Agilent ZORBAX RRHD Eclipse Plus 

C18, 95Å, 2.1 x 150 mm, 1.8 µm 

(PN959759-902) 

H₂O + 5mM PFPA 
50% ACN + 50% 

H₂O 
0.40 

0.5min 97.0/3.0% 

10.0min 35.0/65.0% 

10.1min 10.0/90.0% 

12.0min 10.0/90.0% 

12.1min 50.0/50.0% 

14.0min 50.0/50.0% 

14.1min 97.0/3.0% 

18.0min 97.0/3.0% 

50 5 

SPO C18 

ESI- 

Agilent ZORBAX RRHD Eclipse Plus 

C18, 95Å, 2.1 x 150 mm, 1.8 µm 

(PN959759-902) 

H₂O + 5mM PFPA 
50% ACN + 50% 

H₂O 
0.40 

0.5min 97.0/3.0% 

10.0min 35.0/65.0% 

10.1min 10.0/90.0% 

12.0min 10.0/90.0% 

12.1min 50.0/50.0% 

14.0min 50.0/50.0% 

14.1min 97.0/3.0% 

18.0min 97.0/3.0% 

50 5 

SPO HILIC 

ESI- 

Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 100, 2.7 µm, PEEK-lined 

(PN675775-924) 

H₂O + 10mM 

C₂H₇NO₂ + 5µM 

medronic acid, pH 

9.0 

90% ACN + 10mM 

C₂H₇NO₂ + 5µM 

medronic acid, pH 

9.0 

0.25 

2.0min 10.0/90.0% 

12.0min 60.0/40.0% 

13.0min 80.0/20.0% 

16.0min 80.0/20.0% 

17.0min 10.0/90.0% 

25.0min 10.0/90.0% 

30 5 
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Primary 

Cohort HILIC 

ESI+ 

Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 100, 2.7 µm, PEEK-lined 

(PN675775-924) 

H₂O + 0.1% formic 

acid + 5µM 

medronic acid, pH 

3.0 

90% ACN + 0.1% 

formic acid + 5µM 

medronic acid, pH 

3.0 

0.25 

2.0min 10.0/90.0% 

12.0min 60.0/40.0% 

13.0min 80.0/20.0% 

16.0min 80.0/20.0% 

17.0min 10.0/90.0% 

25.0min 10.0/90.0% 

30 5 

Primary 

Cohort HILIC 

ESI- 

Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 100, 2.7 µm, PEEK-lined 

(PN675775-924) 

H₂O + 10mM 

C₂H₇NO₂ + 5µM 

medronic acid, pH 

9.0 

90% ACN + 10mM 

C₂H₇NO₂ + 5µM 

medronic acid, pH 

9.0 

0.25 

2.0min 10.0/90.0% 

12.0min 60.0/40.0% 

13.0min 80.0/20.0% 

16.0min 80.0/20.0% 

17.0min 10.0/90.0% 

25.0min 10.0/90.0% 

30 5 

Secondary 

Cohort 

HILIC ESI-  

Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 150 mm, 2.7 µm (PN 683775-924) 

H₂O + 10mM 

C₂H₇NO₂ + 5µM 

medronic acid, pH 

9.0 

90% ACN + 10mM 

C₂H₇NO₂ pH 9.0 
0.50 

11.5min 30.0/70.0% 

12.0min 0.0/100.0% 

15.0min 0.0/100.0% 

30 2 

Secondary 

Cohort HILIC 

ESI+  

Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 150 mm, 2.7 µm (PN 683775-924) 

H₂O + 0.1% formic 

acid, pH 3.0 

90% ACN + 0.1% 

formic acid, pH 3.0 
0.80 

11.5min 30.0/70.0% 

12.0min 0.0/100.0% 

15.0min 0.0/100.0% 

30 left / 20 

right 
2 

Table 2.9.2: Summary of Liquid Chromatography Parameters used in LC-MS Experiments.  
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 Sample Preparation Optimisation Primary Cohort Secondary Cohort 

Method ID C18 ESI+ C18 ESI- HILIC ESI- HILIC ESI+ HILIC ESI- HILIC ESI- HILIC ESI+ 

MS System 
Agilent 6545 LC/Q-

TOF (G6545B) 

Agilent 6545 LC/Q-

TOF (G6545B) 

Agilent 6545 LC/Q-

TOF (G6545B) 

6546 LC/Q-TOF 

(G6546A) 

Agilent 6545 LC/Q-

TOF (G6545B) 

6546 LC/Q-TOF 

(G6546A) 

6546 LC/Q-TOF 

(G6546A) 

Ionization Mode Dual AJS ESI Dual AJS ESI Dual AJS ESI Dual AJS ESI Dual AJS ESI Dual AJS ESI Dual AJS ESI 

Ionization Polarity Positive Negative Negative Positive Negative Negative Positive 

Gas Temperature 200°C 200°C 200°C 200°C 200°C 200°C 200°C 

Drying Gas 10L/min 10L/min 10L/min 10L/min 10L/min 10L/min 10L/min 

Nebulizer Pressure 40psi 40psi 40psi 40psi 40psi 40psi 40psi 

Sheath Gas 

Temperature 
300°C 300°C 300°C 300°C 300°C 300°C 300°C 

Sheath Gas Flow 12L/min 12L/min 12L/min 12L/min 12L/min 12L/min 12L/min 

Capillary Voltage 3000V 3000V 3000V 3000V 3000V 3000V 3000V 

Nozzle Voltage 0V 2000/0V 0V 0V 0V 0V 0V 

Fragmentor 120V 120V 125V 115V 125V 115V 115V 

Skimmer 65V 65V 65V 65V 65V 65V 65V 

Octopole 1 RF 

Voltage 
750V 750V 750V 750V 750V 750V 750V 

Acquisition Range 50-1000m/z 50-1000m/z 50-1000m/z 40-1000m/z 50-1000m/z 40-1000m/z 40-1000m/z 

MS Acquisition Rate 5 spectra/sec 5 spectra/sec 3 spectra/sec 1 spectrum/sec 3 spectra/sec 1 spectrum/sec 1 spectrum/sec 

Reference Masses 

(m/z) 
121.0509, 922.0098 

68.9958, 119.0363, 

1033.9881 

68.9958, 119.0363, 

980.0164 
121.0509, 922.0098 

68.9958, 119.0363, 

980.0164 

68.9958, 119.0363, 

980.0164 
121.0509, 922.0098 

Table 2.9.3: Summary of Mass Spectrometry Parameters used in LC-MS Experiments 
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Figure 2.9.1: Summary of Software Used for Various Stages of LC-MS Data Analysis. Full details of software versions are shown in Table 2.1.6. 

LC/Q-ToF: Liquid Chromatography Quadropole Time-of-Flight Mass Spectrometry; MPP: Mass Profiler Professional.  



2.9.5 Pre-Processing – Targeted Analysis 
Results files (.d format) for samples, synthetic standards, and PooledQC samples 

were analysed using Agilent MassHunter ProFinder. For targeted analyses data 

was analysed using the Batch Targeted Feature Extraction (TFE) wizard. Criteria 

and parameters for batch TFE are summarised in Figure 2.9.2 and detailed below. 

A custom PCDL containing the 53 metabolites included in the synthetic standard 

metabolite mixture (Metabomix) was built from the Agilent MassHunter METLIN 

Metabolomics Database and Library. A summary of the Metabomix PCDL contents 

used for targeted analyses is included in Table 2.9.4. Synthetic standards were 

analysed, and retention times were determined for ESI+ and ESI- modes. 

Metabolites from the target list were identified in the PooledQC samples. Certain 

metabolites were detected in both negative and positive modes of ionisation. To 

choose which mode to use for the detection the following criteria were considered: 

manual review of chromatography, %CV of area thought the run, and RT drift across 

the runs. 

2.9.6 Targeted Feature Extraction Analysis 
Mass and retention time matching was required for targeted analysis: tolerances 

were confined to ±10ppm + 2mDa, and ±0.00 % + 0.5min, respectively. Formula 

targets were limited to Positive H+ and Negative H- ion species. Charge states were 

limited to a range of 1-2 and the isotope model assigned to common organic (no 

halogens) to allow for metabolite analysis. Contributions to matching scores were; 

Mass Score 100, Isotope abundance score 60, Isotope spacing score 50, and 

Retention time score 50. Expected data variation was maintained at default levels 

(MS mass 2mDa + 5.6ppm; MS isotope abundance 7.5%; MS/MS mass 5.0mDa + 

7.5ppm; Retention time 0.115min). Overall scores below 75 and single ion predicted 

abundances below 50 were flagged for manual review. Extracted ion 

chromatograms were integrated using Agile 2 methods and smoothed by Gaussian 

function (function width 9 points, Gaussian width 5 points) prior to integration. Peaks 

were saved in both centroid and profile formats were possible, with preferences for 

centroid. Maximum spike width was 2 and required valley 0.70 for centroiding peak 

location. Spectra were included at the apex of the peak and excluded if above 20% 

of saturation. Find-by-Formula scores above 50 were required and compounds had 

to satisfy conditions in at least 33% of files in at least 1 sample group. 

Chromatography was manually reviewed, and compounds present in blank samples 
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removed from analyses. Results were exported in Compound Exchange 

Format (.CEF) and subsequently imported and visualised in MPP as described in 

Section 2.9.10. 

2.9.7 Pre-Processing – Untargeted Analysis 
For untargeted analysis, results files (.d format) for samples and blanks were 

imported into Agilent MassHunter ProFinder and analysed using the Batch 

Recursive Feature Extraction (RFE) wizard. Criteria and parameters for batch RFE 

are summarised in Figure 2.9.3 and detailed below. Chromatography was manually 

reviewed, and compounds present in blank samples removed from analyses. 

Results were exported in Compound Exchange Format (.CEF) and subsequently 

imported and visualised in MPP as described in Section 2.9.10. Tentative metabolite 

IDs were assigned using ID browser based on 1) score and 2) literature review. 

 

 

Figure 2.9.2: Summary of Steps and Parameters for Targeted Feature Extraction 

(TFE) in (semi-) Targeted Metabolomic Analyses. See Section 2.9.6 for full details



Name Formula Mass CAS METLIN KEGG ID n Spectra 

1-Methyl-L-Histidine C7H11N3O2 169.0851 332-80-9 3741 C01152 0 

3-Methyl-L-Histidine C7H11N3O2 169.0851 368-16-1 3293 C01152 0 

4-Hydroxy-L-Proline C5H9NO3 131.0582 30724-02-8 58354 C01015 0 

Acetyl-CoA C23H38N7O17P3S 809.1258 N/A N/A C00024 3 

alpha-Ketoglutaric Acid C5H6O5 146.0215 328-50-7 119 C00026 3 

β-Alanine C3H7NO2 89.0477 107-95-9 36 C00099 3 

Carnosine C9H14N4O3 226.1066 305-84-0 38 C00386 5 

Citric Acid C6H8O7 192.0270 77-92-9 124 C00158 6 

Citrulline C6H13N3O3 175.0957 372-75-8 16 C00327 3 

Creatinine C4H7N3O 113.0589 60-27-5 8 C00791 6 

delta-Hydroxylysine C6H14N2O3 162.1004 13204-98-3 47 C01211 0 

D-Glucose 6-Phosphate C6H13O9P 260.0297 56-73-5 145 C00092 3 

DL-3-Amino-Isobutanoic Acid C4H9NO2 103.0633 144-90-1 480 C05145 3 

Ethanolamine C2H7NO 61.0528 141-43-5 3207 C00189 3 

Fumaric acid C4H4O4 116.0110 110-17-8 3242 C00122 1 

gamma-Aminobutryic Acid C4H9NO2 103.0633 56-12-2 279 C00334 4 

Glycine C2H5NO2 75.0320 56-40-6 20 C00037 5 

Homocystine C8H16N2O4S2 268.0551 462-10-2 4189 C01817 0 

Inosine 5'-monophosphate (IMP) C10H13N4O8P 348.0471 131-99-7 3490 C00130 6 
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Isocitrate C6H8O7 192.0270 320-77-4 3328 C00311 2 

Lactic acid C3H6O3 90.0317 50-21-5 116 C01432 0 

L-Alanine C3H7NO2 89.0477 56-41-7 11 C00041 4 

L-alpha-Aminobutyric acid C4H9NO2 103.0633 1492-24-6 35945 C02356 0 

L-Anserine C10H16N4O3 240.1222 N/A 4195 C01262 0 

L-Arginine C6H14N4O2 174.1117 74-79-3 13 C00062 5 

L-Aspartic Acid C4H7NO4 133.0375 56-84-8 15 C00049 4 

L-Cystathionine C7H14N2O4S 222.0674 56-88-2 39 C02291 1 

L-Cystine C6H12N2O4S2 240.0238 56-89-3 17 C00491 3 

L-Glutamate C5H9NO4 147.0532 56-86-0 19 C00025 8 

L-Histidine C6H9N3O2 155.0695 71-00-1 21 C00135 5 

L-Isoleucine C6H13NO2 131.0946 73-32-5 23 C00407 4 

L-Leucine C6H13NO2 131.0946 61-90-5 24 C00123 4 

L-Lysine C6H14N2O2 146.1055 56-87-1 25 C00047 3 

L-Malic acid C4H6O5 134.0215 N/A 45931 C00149 3 

L-Methionine C5H11NO2S 149.0510 63-68-3 26 C00073 6 

L-Ornithine C5H12N2O2 132.0899 3184-13-2 45121 C00077 3 

L-Phenylalanine C9H11NO2 165.0790 63-91-2 28 C00079 5 

L-Proline C5H9NO2 115.0633 147-85-3 29 C00148 5 
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L-Serine C3H7NO3 105.0426 56-45-1 30 C00065 5 

L-Threonine C4H9NO3 119.0582 72-19-5 32 C00188 5 

L-Tryptophan C11H12N2O2 204.0899 73-22-3 33 C00078 6 

L-Tyrosine C9H11NO3 181.0739 60-18-4 34 C00082 5 

L-Valine C5H11NO2 117.0790 72-18-4 35 C00183 4 

myo-Inositol C6H12O6 180.0634 87-9-8 144 C00137 5 

Nicotinamide adenine dinucleotide (NAD) C21H28N7O14P2 664.1169 53-84-9 101 C00003 0 

Oxaloacetate C4H4O5 132.0059 328-42-7 123 C00036 1 

Pyruvic acid C3H4O3 88.0160 127-17-3 117 C00022 2 

Sarcosine C3H7NO2 89.0477 107-97-1 51 C00213 3 

Succinic acid C4H6O4 118.0266 110-15-6 114 C00042 4 

Succinyl-CoA C25H40N7O19P3S 867.1313 604-98-8 444 C00091 3 

Taurine C2H7NO3S 125.0147 107-35-7 31 C00245 3 

Trimethylamine N-oxide (TMAO) C3H9NO 75.0684 1184-78-7 3773 C01104 0 

Urea CH4N2O 60.0324 57-13-6 6 C00086 0 

Table 2.9.4: Summary of Metabomix PCDL Contents for Targeted Analysis. See Section 2.9.6 for full details.



 

Figure 2.9.3: Summary of Steps and Parameters for Recursive Feature Extraction (RFE) in Untargeted Metabolomic Analyses. See Section 

2.9.8 for full details. 



2.9.8 Untargeted Recursive Feature Extraction Method 
Extraction parameters were limited to Positive H+ and Negative H- ion species and 

peaks with (centroid) height above 1,000 counts. Charge states were limited to a 

range of 1-2 and the isotope model assigned to common organic (no halogens) to 

allow for metabolite analysis. The compound ion count threshold was limited to ≥2 

ions to improve identification efficacy. RT and mass tolerances were confined to 

±0.00 % + 0.5min and ±10ppm + 2mDa, respectively. Molecular feature extraction 

(MFE) scores above 70 were required and compounds had to satisfy MFE 

conditions in at least 2/6 files in at least 1 sample group and were flagged if they fell 

below this. Contributions to overall score were as follows; Mass Score 100, Isotope 

abundance score 60, Isotope spacing score 50, Retention time score 0. Expected 

data variation was maintained at default levels (MS mass 2mDa + 5.6ppm; MS 

isotope abundance 7.5%; MS/MS mass 5.0mDa + 7.5ppm; Retention time 

0.115min). Matching tolerances were ±10ppm and ±0.5mins for mass and RT, 

respectively. Chromatograms were smoothed using a Gaussian function width of 9 

points and a Gaussian width of 5 points. Chromatograms were extracted in both 

centroid and profile format (with centroid preferred) and absolute heights below 

1,000 at peak apex were excluded. The maximum centroid spike width was 2 and 

the required valley 0.70. Spectra above 20% saturation were excluded. Target ion 

scores below 50 were excluded and as for MFE compounds had to satisfy Find by 

Ion conditions in at least 2/6 files in at least 1 sample group.  

2.9.9 Metabolite Annotation 
Following statistical analysis (see Section 2.9.10), significantly altered metabolites 

were imported into MPP ID Browser. Tentative metabolite IDs [25] were assigned 

using the Agilent MassHunter METLIN Metabolomics Database. Compounds were 

annotated in the first instance by Library/Database search, and by formula 

generation when there were no Library/Database hits. For formula generation 

positive and negative hydrogen ions were the assumed charge carriers. A minimum 

of 3 and max of 60 carbon atoms were permitted. Additional limits of 120, 30, 30, 5 

and 3 were set for hydrogen, oxygen, nitrogen, sulphur and phosphorous, 

respectively. LC/MS tolerances for precursor ion m/z were ± 10ppm + 2mDa and for 

fragment ion m/z ±15ppm + 5mDa. Search criteria were not limited by instrument 

type, ionisation mode, or collision energy. Identification parameter (DB search, MFG 

score, library search score, BioConfirm) score weights were all evenly set to 40. 
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Search results were limited to the 10 best hits per compound and minimum overall 

scores set to 35. Metabolite IDs with scores above 70 were considered reliable. 

Features were annotated with tentative metabolite IDs assigned based on 1) score 

and 2) brief literature review. Where scores were equal IDs were assigned by brief 

literature review to determine likelihood of metabolite’s impact on monocyte 

function. Endogenous metabolites (as listed in HMDB) were preferred. 

2.9.10 Statistical Metabolomic Analysis 
Initial statistical analysis was completed in MPP. Data was imported as .CEF files 

and treatment groups assigned as parameters. All available RT and mass data was 

used and all charge states were permitted. A number of different normalisation 

strategies were applied to metabolomic data of ANCA stimulated monocytes and 

are described in Chapter 3. Residual protein concentration measured by Pierce™ 

BCA assay (as described in Section 2.5) was deemed the most appropriate method 

for data normalisation. Samples were normalised by applying the protein value 

(measured in OD@595nm or μg/ml, as specified) as an external scalar value. 

Significantly altered metabolites (relative to unstimulated cells) were highlighted in 

MPP by filtering on volcano plot using a moderated t-test and a Benjamini-Hochberg 

false discovery rate (FDR) correction. Clustering analysis on significantly altered 

metabolites was completed with Euclidean distance metric and median linkage rule. 

Four-point Principal Component Analysis (PCA) plots were generated on conditions 

with various entity (metabolite loadings). Subsequent statistical analysis was 

completed in GraphPad Prism (Version 9.0, GraphPad Software LLC) as specified. 

2.10 Fluorescent DNA Quantitation Assay 
All materials used for DNA quantitation assay were DNase and RNAse free. A 

frozen Fluorescent DNA Standard (1mg/ml) was thawed in a 50°C water bath for 

10mins. The high concentration DNA standard solution was prepared by combining 

100μl Fluorescent DNA Standard, 100μl 10X Fluorescent DNA Assay Buffer, and 

800μl dH2O in a sterile 1.5ml Eppendorf tube. This 100μg/mL DNA Standard is 

serially diluted to create a 7-point standard curve with an additional negative blank. 

Fluorescent DNA Dye consists of 1μg/mL bisbenzimide H33258 Solution. High 

concentration Fluorescent DNA Dye solution was prepared by combining 1ml 10X 

Fluorescent DNA Assay Buffer, 9ml dH2O, and 10μl Fluorescent DNA Dye in a 15ml 

falcon. This volume is sufficient for a single 96-well plate. Turn on fluorimeter and 
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allow to warm up for 15-20 mins prior to use. Add 100μl Fluorescent DNA Dye 

solution to appropriate wells of 96-well plate. Add 0.5μl each sample and standard 

to appropriate wells (in duplicate/triplicate). Set excitation and emission 

wavelengths to 360nm and 460nm, respectively and read plate. Unknown values 

were interpolated from the standard curve and results analysed using GraphPad 

Prism (Version 9.0.0). 

2.11 Real-Time Analysis of Cellular Metabolism with 
Seahorse Extracellular Flux Technology 

2.11.1 Seahorse Assay Plate Preparation 
The day prior to a Seahorse experiment FluxPaks cartridges were hydrated by 

emersion in XF Calibrant Solution (100840-000, Agilent Technologies) overnight at 

37°C in a CO2-free incubator. Non-adherent monocytes were immobilised onto the 

base of the XF24 cell culture plate with Cell-Tak (10317081, Thermo Fisher). Stock 

CellTak was diluted to 2.85μg/ml with 0.1M sodium bicarbonate (pH 8.0) and 2mM 

sodium hydroxide. Immediately after dilution, 200μl Cell-Tak solution was added to 

each well of the XF24 well cell culture plate and left to absorb for 30 mins at room 

temperature. Wells were washed twice with 500μl sterile H2O and the plate was left 

to air dry.  

 

Once dry and at room temp 1x106 freshly isolated monocytes were plated in each 

well in 100μl XF Media (Agilent Technologies, 102365-100) supplemented with 

5.5mM D-Glucose (Sigma, G7021), 4mM L-glutamine (Gibco, 25030-024), and 

1mM sodium pyruvate (Gibco, 11360-039). This media is hereby referred to as XF+ 

media. Plates were centrifuged up to 40g with acceleration = 4 and no brake. The 

plate was then turned 180° and centrifuged up to 80g with acceleration = 4 and no 

brake to allow even coating of cells. Plates were incubated at 37°C with 5% CO2 for 

30min and an additional 200μl XF+ Media was then added to each well.  

2.11.2 Measurement of Real Time Metabolic Changes by 
Seahorse 

The appropriate stimulants were added to the relevant ports of a pre-prepared 

XFe24 FluxPak (Agilent Technologies, 102340-100). The loaded FluxPak was left 

to equilibrate for 10 min at 37°C in a CO2-free incubator before being placed in the 

Seahorse XFe24 analyser for calibration. The plate containing adhered monocytes 

was then added to the analyser. Each measurement cycle consisted of 2 mins Mix, 
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2 mins Wait, 3 mins Measure. Four initial basal measurements were performed 

followed by injection of stimulants from port A.  

2.11.3 Seahorse Assay Analysis 
Results were analysed initially using Wave (Version 2.6.1.53, Agilent Technologies 

Inc.) and subsequently with Microsoft Excel (Version 16.43, Microsoft) and 

GraphPad Prism (9.0.0, GraphPad Software LLC). Results are reported as readings 

of extracellular acidification rate (ECAR) and oxygen consumption rate (OCR), 

which are used as correlates of glycolytic activity and oxidative phosphorylation 

respectively. 

2.12 Statistical Analysis 
Unless otherwise stated, all results are compared to equivalent values in 

unstimulated cells. Statistical analysis was performed in GraphPad Prism (Version 

9.0, GraphPad Software LLC). Fold change (FC) was calculated by dividing results 

by the corresponding value for unstimulated cells. Specific statistical tests used are 

indicated in relevant figure legends. A detailed description of statistical methods 

employed for metabolomics analysis of monocytes is provided in Section 2.9.10. 

Significance levels are reported compared to unstimulated controls unless 

otherwise specified. Data are presented as mean ± (SEM). Significance labels in 

figures are indicated as follows: * = p<0.05; ** = p<0.01; *** = p<0.001; **** = 

p<0.0001. Non-significant findings are not labelled unless otherwise specified. 
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Chapter 3: Optimisation of 
Parallel Immunologic Readouts 

for Metabolomic Profiling of 
Primary Monocytes  
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3.1 Introduction 
To date, investigations of monocyte metabolism by LC-MS have been limited. In 

immunometabolic research, CD14+ cells are typically differentiated into 

macrophages (or DCs). Because primary monocytes have not received as much 

attention as their macrophage counterparts, less is known about their immunological 

or metabolic relevance in autoimmune disease. This project is designed to build on 

previous work from our group investigating monocytes in AAV [203, 238, 244]. Here 

CD14+ magnetic activated cell sorting (MACS) was chosen as the optimum 

monocyte isolation protocol in terms of cell purity and viability [244]. Monocyte 

isolation procedures are susceptible to functional and phenotypic variations [291, 

292]. Cell sorting by flow cytometry can also alter the metabolic phenotype of cells 

[293]. These changes in monocyte physiology pose a challenge for measuring 

metabolic function. The lack of an appropriate monocyte cell model for AAV 

research further complicates these investigations [294]. Thus, the experimental 

protocols and relevant readouts to be incorporated must be carefully considered.  

 

The power of high-quality metabolomics data increases massively when it can be 

integrated with additional biological readouts. Given the dynamic nature of 

metabolism, it is crucial to validate the findings of untargeted metabolomic 

investigations. A recent review [26] recommended coupling LC-MS metabolomics 

with multiple functional readouts. Sample readouts include cytokine production by 

ELISA, monitoring gene expression by transcriptomics or qRT-PCR, quantitative 

fluorescence- or luminescence-based measurements with metabolite assay kits, or 

flow cytometry/CyToF to assess changes in cell phenotype and function. 

Metabolomic sample preparation strategies that preserve DNA, RNA, and protein 

after metabolite extraction have also been developed to permit these subsequent 

analyses [295, 296]. Inhibition or synthesis gene knock-out of a specific metabolite 

and monitoring the changes in immune function can verify the importance of a given 

pathway. These experiments can be carried out in vitro or with appropriate animal 

models. 

 

In this work our key immunological readout was cytokine production - primarily IL-

1β secretion. This is a pro-inflammatory cytokine primarily produced by monocyte-

lineage cells which has shown to be increased in autoimmune disease [297]. In 
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contrast to their macrophage counterparts, primary monocytes can release IL-1β 

following activation from a single signal using an alternative inflammasome pathway 

[121, 298]. Anti-MPO is one such stimulus that can induce IL-1β release from 

monocytes, an effect which was dependent on access to glucose [203, 238]. 

Further, IL-1β is a critical inflammatory mediator in murine AAV, and IL-1 receptor 

blocking protected these animals from severe glomerulonephritis [218]. Other key 

inflammatory cytokines produced by monocytes in response to ANCA include IL-6 

and TNF-α. In macrophages cytokine production is closely linked to metabolism [7, 

299]. The mechanisms surrounding cytokine production and release by ANCA are 

currently unknown and are beyond the scope of this work, but we do theorise them 

to be intimately linked to metabolism. Pro-inflammatory cytokine production is 

rapidly induced in ANCA-stimulated monocytes, with significant upregulation seen 

as early as 4 hours [226, 238, 240]. We theorise that early (and potentially pre-

emptive) changes in metabolism are facilitating these pro-inflammatory responses. 

 

Measuring rates of glycolysis and OXPHOS using Seahorse is a good ‘litmus test’ 

for the metabolic phenotype of immune cells. However, there are thousands of 

endogenous human metabolites which feed from these into more diverse and 

interconnected metabolic pathways. Many preliminary investigations of immune cell 

metabolism utilise the Seahorse analyser. This device measures real-time changes 

in oxygen consumption and extracellular acidification of live cells in real time [300]. 

These readouts are effectively surrogates for oxidative phosphorylation (OXPHOS) 

and glycolysis, respectively, two key pathways for immune cell metabolism [11]. 

Determining the metabolic preference of a given immune cell under specific 

conditions can give clues to their functional relevance. In the context of AAV, anti-

MPO immediately increased rates of both OXPHOS and glycolysis in primary 

monocytes [238]. PR3-ANCA also increased cell metabolism through these 

pathways, but there were substantial kinetic differences to anti-MPO (see Figure 

1.4.2). These metabolic disparities may account for the differences in inflammatory 

cytokine production between the two ANCA subtypes [203].  

 

Seahorse-based analysis calls for specific experimental conditions which may 

create discordance with linked parallel experiments. A specific buffer-free media 

formulation is required for Seahorse experiments, and FBS cannot be added as it 



   
 

 
 

93 

can interfere with the accuracy of readouts. Cellular metabolomic investigations are 

sensitive to differences in cell media [301], and this may confound findings. In 

addition, suspension cells need to be adhered to the Seahorse plates, which 

significantly alters the cell matrix and requirements for metabolite extraction. To 

date, there have been no reports of sequential LC-MS analysis of cells measured 

using Seahorse. Silva et al. [88] showed slight differences in protein levels from 

directly extracted cells compared to those plated for experimental use. Availability 

of sufficient cell numbers, utility of parallel experiments, and the feasibility of 

measuring multiple physiological readouts simultaneously, must be carefully 

considered during experimental design. LC-MS analysis to profile the monocyte 

metabolome in response to ANCA stimulation is a logical next step to discern the 

specific metabolic pathways implicated. The aim of this chapter was to optimise 

immunological experiment protocols in ANCA stimulation, to ensure their 

compatibility with metabolomic analyses. 

3.2 Aims & Methods 
I. To define optimum cell culture conditions and experimental protocols for 

ANCA stimulation of primary monocytes. 

II. To investigate pilot immunologic readouts in ANCA-stimulated monocytes. 

III. To optimise additional immunologic and metabolic experimental readouts 

for parallel analysis with LC-MS. 
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3.2.1 Experimental Methods 
The experiments described in this chapter follow the general paradigm of monocyte 

isolation and stimulation described in Section 2.2. Modifications to this protocol were 

trialled including the use of priming agents, polyclonal IgGs, donor blood sources, 

and metabolic/immunologic inhibitors. Attempts to combine immunological and 

metabolic/metabolomic experiments are also described. Antibodies used for flow 

cytometry experiments in Sections 3.3.12 and 3.3.13/14 are shown in Tables 3.2.1 

and 3.2.2, respectively. Precise details of these alterations are described in the 

appropriate sections and figure legends. 

 

Target Antigen Fluorochrome Clone 
Species 

Targeted 
Product Code Company 

CD14 PE-Vio770 TÜK4 Human 130-096-628 Miltenyi Biotec 

MPO PE 2C7 Human MCA1757PE 
Bio-Rad 

Laboratories Inc 

PR3 FITC PR3G-2 Human ab65255 Abcam 

Fixable Viability 

Dye 
eFluor450 N/A Human 65-0863-14 eBioscience™ 

Table 3.2.1: Flow Cytometry Antibodies used for Monocyte Staining in the Secondary 

Metabolomic Profiling Cohort. See Section 3.3.12. 

 

Target Antigen Fluorochrome Clone 
Species 

Targeted 
Product Code Company 

CD14 PE-Vio770 TÜK4 Human 130-096-628 Miltenyi Biotec 

MPO PE 2C7 Human MCA1757PE 
Bio-Rad 

Laboratories Inc 

CD54 APC REA266 Human 130-103-910 Miltenyi Biotec 

Table 3.2.2: Flow Cytometry Antibodies used for Monocyte Surface Staining for 

Assessment of MPO Expression and IL-1β Production and CD54 Expression. See 

Sections 3.3.13 & 3.3.14. 
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3.3 Results 

3.3.1 Monocyte Source can Affect Inflammatory Effector 
Functions 

Interpersonal variation can affect biological readouts, as can blood collection and 

storage protocols. We compared the functionality of primary monocytes isolated 

from two sources: IBTS buffy coats and fresh blood from haemochromatosis 

patients attending St. James’ Hospital. Fresh blood monocytes produced more IL-

1β in response to anti-MPO stimulation than buffy coats (Figure 3.3.1). This effect 

was seen at both 4- and 18-hours post-stimulation. Surprisingly, LPS did not induce 

significant changes in IL-1β production at either timepoint. After 4 hours of 

stimulation the blood source was a small (6.06%) but significant source of variation 

(p=0.0356). This effect was lost at 18 hours, but an interaction between blood 

source and treatment did emerge (10.91% of variation, p=0.0493). Given the 

enhanced inflammatory response to anti-MPO and the other logistical benefits, fresh 

blood was selected as the blood source for metabolomic profiling experiments.  
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Figure 3.3.1: Comparison of Buffy Coat and Fresh Blood Monocyte IL-1β Production 

after 4- and 18-hour Stimulation. CD14+ monocytes were isolated from PBMCs by MACS 

separation using blood collected from buffy coats (n=8) or haemochromatosis patients 

(fresh blood, n=13). Cells were plated and stimulated @37°C for 4 (A) or 18 hours (B) with 

5μg/ml monoclonal anti-MPO or 200ng/ml LPS. IL-1β production was measured in the 

supernatant by ELISA. Results from each timepoint were analysed by 2-way ANOVA and 

Dunnett’s multiple comparisons test. Results are plotted as mean ± standard error of the 

mean (SEM).  
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3.3.2 Optimising Conditions for CD14+ MACS Monocyte Isolation 
Previous work from our group compared different isolation techniques for assessing 

primary monocytes function upon ANCA stimulation [244]. CD14+ positive magnetic 

activated cell sorting (MACS) isolation was determined to be the superior technique 

based on cell purity and viability. Manufacturer’s instructions recommend 

resuspending thrice-washed PBMCs in 80µl of buffer per 10⁷ total cells and adding 

20µL of CD14 MicroBeads per 10⁷ total cells. Given the large cell volumes available 

from buffy coats and fresh blood samples, these recommendations can be incredibly 

wasteful. We sought to determine an optimum ratio of magnetic beads to cell buffer 

suspension for maximised CD14+ monocyte yield. We determined that a lower 

volume of magnetic beads was required when the ratio of magnetic beads to cell 

buffer suspension was high (Figure 3.3.2). The volume of cell suspension did not 

influence cell yield. Reducing the volume of magnetic beads used also allows for 

additional replicates to be completed. We determined that a 1:30 ratio of magnetic 

beads to cell buffer suspension was optimal. Full details of the cell isolation protocol 

can be found in Section 2.2.3 

 

Figure 3.3.2: Optimising Conditions for CD14+ MACS Monocyte Isolation. PBMCs 

were isolated from buffy coats using CD14+ positive magnetic activated cell sorting (MACS) 

isolation. Different CD14 magnetic bead:cell buffer suspension ratios were trialled to 

maximise monocyte yield. Monocyte yield is plotted on the left Y axis (purple) and the total 

volume of cell suspension on the right Y axis (gold). More concentrated ratios improved 

monocyte yield regardless of total cell suspension volume. Best-fit lines were plotted by 

simple linear regression with a semi-log line.  
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3.3.3 Comparison of 6- and 24-Well Plates for Monocyte 
Stimulation and Metabolomic Analysis 

A higher cell number is an advantage in cellular metabolomic analyses as it 

increases the levels of low abundance metabolites that can be detected above 

background. To achieve the required cell numbers for metabolomic analysis the 96-

well format needed to be scaled up. Keeping the concentration of 1x106 cells per ml 

consistent we compared the utility of 6- and 24-well plates using 5ml and 1ml of 

cells, respectively (Figure 3.3.3). Overall, there were significant differences between 

treatment conditions (p=0.0181). Unstimulated cells in the 6-well plate had higher 

background IL-1β production than 24-well. Activation of these monocytes with LPS 

did not induce the expected increase in IL-1β, likely due to this high background. As 

is common with investigations of primary cells there was a high degree of 

interpersonal variation between donors. Despite the 24-well format also not 

returning significant results with LPS activation, the lower background makes this 

configuration preferable. Both plate formats were adaptable to the optimised 

metabolite extraction protocol (see Section 2.9.2 and Chapter 3). Given the 

activated baseline microenvironment apparent in the 6-well format we opted to use 

the 24-well format for metabolomic profiling experiments. 

 

Figure 3.3.3: Comparison of 6- and 24-Well Plates for Monocyte Stimulation and 

Metabolomic Analysis. CD14+ monocytes (n=4) were isolated from the PBMCs of healthy 

controls by MACS separation. Primary monocytes were plated in 6- and 24-well plates in 

5ml or 1ml RPMI at a concentration of 1x106/ml. Cells were stimulated for 4 hours with 

200ng/ml LPS and IL-1β production was measured in cell supernatants by ELISA. Results 

for individual donors are plotted under different conditions and linked by a straight line. 

Differences between conditions were compared using Friedman’s test. 
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3.3.4 Polyclonal IgG Preparations from AAV Patients do not 
Induce Pro-Inflammatory Cytokine Production as 
Commercial Monoclonals do 

Many investigations of the effects of ANCAs on innate immune cells use polyclonal 

IgG preparations from AAV patients. We investigated the use of an in-house 

prepared cohort of IgG preparations; four ANCA negative or anti anti-glomerular 

basement membrane (GBM), four MPO-ANCA, and four PR3-ANCA. First 

comparing 25 and 250μg/ml IgG stimulations (Figure 3.3.4A), we found no 

significant difference between either concentration in terms of IL-1β production. 

250μg/ml IgG is more frequently used in the literature and was used in subsequent 

stimulations to maintain consistency with these peer-reviewed protocols. Next, we 

examined the utility of TNF-α priming for polyclonal IgG stimulation. TNF-α priming 

did not enhance IL-1β production in IgG-stimulated primary monocytes after 4- or 

18-hour stimulation (Figures 3.3.4B and C, respectively). In many cases TNF-α 

actually limited IL-1β production, in both monoclonal and polyclonal stimulations. 

There was no significant increase in IL-1β production at either timepoint, for MPO-

ANCA or PR3-ANCA, with or without TNF-α, though there was for monoclonal anti-

MPO stimulation. Given these findings we opted to continue our investigations using 

monoclonal ANCA antibodies without TNF-α priming.  
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Figure 3.3.4: IL-1β Production from Polyclonal AAV Patient IgG Preparations. CD14+ 

monocytes were isolated from the PBMCs of healthy controls by MACS separation. Primary 

monocytes were stimulated with 5μg/ml monoclonal anti-MPO or polyclonal IgG 

preparations from AAV patients (MPO- and PR3-ANCA). 25 and 250μg/ml IgG stimulations 

were compared to unstimulated (grey dotted line) and LPS-stimulated cells (red dotted line, 

A). 250μg/ml IgG stimulation was examined with and without 2ng/ml TNF-α priming for 4 

(B) or 18 hours (C). IL-1β production was measured in cell supernatants by ELISA and 

compared to unstimulated cells. Results are plotted as mean ± standard error of the mean 

(SEM).  
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3.3.5 LPS Priming Enhances IL-1β Production in anti-MPO-
Activated Monocytes 

Investigations of ANCA function in neutrophils typically adopt a TNF-α priming step. 

However, previous work from our group (and in Section 3.3.4 above) has shown 

that this does not enhance pro-inflammatory cytokine production in monocytes 

[244]. We hypothesised that LPS would be a better priming agent for these cells, 

given its well-defined role in pro-inflammatory monocyte responses. Indeed, when 

monocytes were primed with a low dose of LPS (2ng/ml – the concentration of TNF-

α traditionally used for neutrophils) prior to ANCA stimulation, the levels of secreted 

IL-1β surpassed that of high-dose LPS alone (Figure 3.3.5). This effect was only 

seen with anti-MPO stimulation, and not with anti-PR3. The majority of IL-1β 

production from primed PR3-treated cells came from the priming LPS (pLPS). We 

also did not see any increase in IL-1β secretion using TNF-α for cell priming. This 

synergistic effect of LPS and anti-MPO may explain why ANCA flares typically occur 

after bacterial infections. Further work is needed to discern the contributions of these 

two stimuli independently to determine their role in ANCA-induced inflammation.



 

Figure 3.3.5: Effects of LPS and TNF-α Priming on IL-1β Production in ANCA-Stimulated Monocytes. CD14+ monocytes were isolated from the 

PBMCs of healthy controls (n=6) by MACS separation. Primary monocytes were pre-treated with 2ng/ml LPS (pLPS) or 2ng/ml TNF-α (pTNF-α) as 

indicated for 30 mins before being stimulated with 5μg/ml monoclonal antibody (mAb) directed against MPO or PR3 for 4 hours. IL-1β production was 

measured in cell supernatants by ELISA and compared to unstimulated cells. Results are plotted as mean ± standard error of the mean (SEM) and 

analysed by Friedman’s ANOVA.



3.3.6 Sodium Azide (NaN3) Does Not Affect Inflammatory 
Responses in Primary Monocytes at Low Concentrations 

Sodium azide (NaN3) is a chemical preservative used to prevent bacterial 

contamination in aqueous laboratory reagents. Our monoclonal anti-MPO and anti-

PR3 antibodies are stored in 0.09% and 0.05% NaN3, respectively. Sodium azide 

has been shown to influence monocyte function at high concentrations (≥10mM). 

To confirm that this is not the case in this work and that we are preserving the ANCA-

specific effects in our results we assessed the impact of NaN3 on IL-1β production. 

NaN3 preparations of various concentrations were prepared using PBS and used to 

stimulated primary monocytes (n=3). None of the NaN3 preparations significantly 

altered IL-1β levels (Figure 3.3.6A). Addition of NaN3 to the experimental system did 

have a small net negative effect on IL-1β production. Furthermore IL-1β production 

did not correlate with concentrations of NaN3 (Figure 3.3.6B). We can conclude that 

the concentration of NaN3 consequentially found in our experiments does not 

significantly influence inflammatory responses in primary monocytes. Additional 

experiments with LPS stimulation may confirm this.  

 

 

Figure 3.3.6: Sodium Azide (NaN3) Does Not Affect Inflammatory Responses in 

Primary Monocytes at Low Concentrations. CD14+ monocytes (n=3) were isolated from 

the PBMCs of healthy controls by MACS separation. Primary monocytes were stimulated 

with various concentrations of sodium azide (NaN3) for 4 hours and IL-1β production was 

measured in cell supernatants by ELISA (A). Results are plotted as mean ± standard error 

of the mean (SEM). IL-1β production was compared to NaN3 concentration and a titration 

curve prepared by Pearson correlation (B).   
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3.3.7 Metabolomic Differences Between ANCA- and LPS-
Stimulated Monocytes are Limited at 24h in a Pilot Analysis 

The number of peer-reviewed publications investigating monocyte metabolomics is 

limited, however the majority involve a 24-hour stimulation [96, 97, 124, 302]. 

Targeted analysis of metabolites included in the synthetic standard mix (see Section 

2.9.2.2) was carried out on ANCA- and LPS- treated monocytes in a small cohort 

(n=3) as described in Section 2.9.5. 32 of the 53 metabolites in the mixture were 

detected in experimental and PooledQC replicates. Statistical analysis was 

performed after normalising of the data to residual protein content as outlined in 

Chapter 4. Using these 32 metabolites, Principal Component Analysis (PCA) plots 

were generated for the four treatment groups – unstimulated cells (NS, negative 

control), LPS (positive control) anti-MPO and anti-PR3 – and PooledQC samples. 

There was moderate separation of treatment groups evident from the PCA plot 

(Figure 3.3.7A). Unstimulated (grey) and LPS-treated (red) monocytes clustered 

together and separately from one another, but still overlapped with other treatment 

groups. The anti-PR3 group (green) clustered relatively well, but the anti-MPO 

stimulated cells (blue) were more variable. PooledQC samples did cluster very well 

together off-centre of the PCA plot (purple), indicating good intra-run consistency. 

Normalised metabolite abundances are plotted in Figure 3.3.7B. There are no 

uniform alterations evident in any one treatment group, likely owing to the small 

sample size. Metabolites highlighted in red – 4-hydroxy-L-proline, serine, threonine, 

and tyrosine – were significantly altered across treatment groups as measured by 

ANOVA. These results should be considered with caution as the small sample size 

may not be entirely reflective of ANCA-induced metabolism. To maintain 

consistency with previously established protocols [238] we opted to profile 

monocyte metabolism at 4 hours for future experiments. There have been some 

metabolic changes detected in monocytes at this early timepoint [85], but this work 

would address a substantial gap in the knowledge base of monocyte metabolism 

and allow us to explore the inchoate metabolic changes that drive the rapid and 

diverse inflammatory responses in these cells. 
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Figure 3.3.7: Pilot Metabolomic Heatmap Analysis of Targeted Metabolites in ANCA- 

and LPS-Stimulated Monocytes. CD14+ monocytes (n=3) were isolated from PBMCs of 

healthy controls by MACS separation (n=3). Cells were plated and stimulated @37°C for 

24 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml 

LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and targeted 

metabolomic analysis of 53 metabolites was completed. 32 of the 53 metabolites were 

detected in experiment samples. Principal Component Analysis (PCA) plots were generated 

for the four treatment groups (NS, LPS, anti-MPO, and anti-PR3) and PooledQC samples 

(A). Median intergroup values are displayed as BCA and log2 normalised AUCs (B).  
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3.3.8 Increased Rates of Glycolysis Correlate with Increases in 
Intracellular Amino Acids 

In a pilot metabolomics investigation, we stimulated primary monocytes with ANCA 

and measured intracellular amino acid content by LC-MS. The stimulated cells were 

also analysed in a parallel Seahorse experiment using a Seahorse XF Glycolysis 

Stress Test (Figure 3.3.8A). This assay quantifies glycolytic function in cells by 

measuring the extracellular acidification rate (ECAR). Fold change in 

glycolysis/ECAR was calculated by dividing the average ECAR after addition of 

glucose (measurements 4-6) by the average ECAR from the basal state 

(measurements 1-3), then dividing results for treatment groups by the paired 

unstimulated cells (NoStim). A number of amino acids were significantly increased 

in lysates of ANCA-stimulated monocytes. The concentrations of these metabolites 

were analysed for potential correlations with the average rates of glycolysis in 

treated cells. Twelve amino acids were reliably detected by LC-MS methods, and 

intracellular concentrations of several of them correlated with the increased rates of 

glycolysis in the corresponding treatment groups (Figure 3.3.8B). In each instance, 

anti-MPO treated cells showed the highest rates of glycolysis, followed by anti-PR3 

and isotype control. Serine showed the strongest linear correlation with an R2 of 

0.9904 (p=0.0048). Threonine (R2=0.9261, p=0.0377) and phenylalanine 

(R2=0.9477, p=0.0265) levels also significantly correlated with glycolysis although 

these associations better suited a hyperbolic trajectory. L-arginine also showed a 

slightly more modest hyperbolic correlation of 0.8939 which approached 

significance (p=0.0545). These findings suggest that the increase in glycolysis 

drives serine, threonine, and phenylalanine anabolism. These metabolites did not 

correlate with increases in cytokine production (data not shown), thus their role in 

driving ANCA-induced inflammation remains to be determined.  
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Figure 3.3.8: Correlations of Intracellular Amino Acid Levels with Rates of Glycolysis 

in ANCA-Stimulated Monocytes. CD14+ monocytes (n=3) were isolated from the PBMCs 

of healthy controls by MACS separation. Cells were plated and stimulated @37°C for 4 

hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or IgG isotype 

control. Glycolysis (ECAR) was measured by Seahorse XF Glycolysis Stress Test (A), and 

intracellular amino acid concentrations were measured in a parallel experiment by LC-MS. 

Fold changes were calculated relative to unstimulated cells and relationships assessed by 

Pearson correlation and linear regression (B).  
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3.3.9 Inhibition of Serine Production Abrogates IL-1β Production 
in Primary Monocytes  

Given the relationship between serine production and glycolysis in ANCA-stimulated 

monocytes we next investigated if this was linked to IL-1β production. CBR-5884 

inhibits 3-phosphoglycerate dehydrogenase (PHGDH) – the first step of the de novo 

serine synthesis pathway which directly branches off from glycolysis [303]. We first 

determined which concentration of CBR-5884 most effectively inhibited IL-1β 

production in monocytes. Primary monocytes isolated from healthy blood were pre-

treated with CBR-5884 of varying concentrations and incubated for 4.5 hours. IL-1β 

production was inhibited in a dose-dependent manner down to 50μM (Figure 

3.3.9A). At lower concentrations the inhibition effect was inconsistent. All inhibitory 

effects of CBR-5884 were lost when cells were incubated for 18 hours (Figure 

3.3.9B). When cells were stimulated with and without serine inhibition, the effect of 

CBR-5884 became even more apparent. Inhibiting serine production with CBR-

5884 for 30 mins prior to (4h) stimulation completely abrogated IL-1β production 

(Figure 3.3.9C). In this small cohort anti-MPO did not induce a significant increase 

in IL-1β levels as was shown previously. These data suggest that CBR-5884 can 

inhibit IL-1β production by limiting serine synthesis. 
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Figure 3.3.9: Effects of Serine Synthesis Pathway Inhibition on IL-1β production in 
ANCA-Stimulated Monocytes. CD14+ monocytes were isolated from the PBMCs of 
healthy controls by MACS separation. Primary monocytes were pre-treated with CBR-5884 
of varying concentrations for 30 mins before being stimulated with 200ng/ml LPS for 4 (A) 
or 18 hours (B). IL-1β production was measured in cell supernatants by ELISA. IL-1β 
secretion was compared for cells pre-treated with (and without) 50μM CBR-5884 for 30 
mins and stimulated for 4 hours with 200ng/ml LPS, or 5μg/ml monoclonal antibody (mAb) 
directed against MPO or PR3 (n=3, C). Results are plotted as mean ± standard error of the 
mean (SEM).  
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3.3.10 Attempted Recovery of Primary Monocytes from Seahorse 
Assay Plates for Subsequent Metabolomic Analysis 

Seahorse analysis measures metabolic changes in real-time, while cellular  

metabolomics provides a deeper snapshot of the metabolic state of the cell at a 

fixed point in time. To complement our primary LC-MS metabolomic profiling 

experiments, we attempted to extract metabolites from Seahorse assay plates after 

stimulation. Seahorse plates were prepared and analysed as described in Section 

2.11 and stimulated for 4 hours with different concentrations of LPS as indicated. 

Immediately following Seahorse analysis, cells were placed on wet ice and 100µl 

80% MeOH @-20ºC was added to each well. Cells were gently scraped and 

removed with gentle pipetting. Replicates were combined for a total of 3x106 cells 

per condition. Cells were subjected to the optimised metabolite extraction protocol 

described in Section 2.9.2 and residual protein content of the metabolite fraction 

(MF) measured by BCA as outlined in Section 2.5. Protein levels were compared to 

those in the metabolite fraction of PBMCs from experiments described in Section 

4.2.3. Using this modified extraction protocol, we measured protein content in 

metabolite (Figure 3.3.10A) and cell pellet fractions (Figure 3.3.10B) to see if 

concentrations were consistent with expected levels. The metabolite fraction levels 

were above those expected for the same cell numbers measured by direct extraction 

(dotted line) but were similar to the blank samples. Conversely cell pellet protein 

measurements fell far below expected values and were lower than those of the 

metabolite fraction. For both fractions (particularly MF) the blank readings were on 

par with treated cells, which may indicate contamination coming from the Cell-Tak. 

Further optimisation of cell recovery from Seahorse plates is needed if these 

samples are to be viable for any subsequent analyses. 



 

Figure 3.3.10: BCA Analysis of Primary Monocytes Recovered from Seahorse Assay Plate. CD14+ monocytes (n=6) were isolated from healthy 

donors and analysed by stimulated with varying concentrations of LPS for 4 hours in a Seahorse analyser. 80% MeOH was added directly to assay 

plates and combined replicates were centrifuged to separate metabolite fraction (A) and cell pellet (B). Both fractions were analysed by BCA assay to 

determine protein content as compared to 3x106 directly extracted cells.



3.3.11 Investigation of Effects of MPO inhibition on Cytokine 
Production in Primary Monocytes 

Inhibition of MPO activity has been proposed as an anti-inflammatory treatment 

strategy for AAV [197, 304]. We investigated the use of the MPO inhibitor 4-

aminobenzoic acid hydrazide (4-ABAH) on ANCA-induced IL-1β production. 

Despite inconsistent results, 100μM brought about the greatest reduction in IL-1β 

levels, despite not reaching significance (Figure 3.3.11A). This is well above the 

IC50 value of 0.3μM, but consistent with concentrations used in vitro [305]. When 

cells were stimulated with and without MPO inhibition we see that 4-ABAH 

completely abrogates the effects of LPS- and (to a lesser extent) anti-MPO-induced 

IL-1β secretion (Figure 3.3.11B). In this small pilot experiment anti-MPO did not 

induce a significant increase in IL-1β as was shown previously. These data suggest 

that inhibition of MPO activity with 4-ABAH can limit IL-1β production in LPS-

stimulated monocytes. Additional experimental replicates are needed to confirm if 

this is the case for ANCA-induced cytokine production. 

 

 

Figure 3.3.11: Effects of MPO Inhibition on IL-1β production in Activated Monocytes. 

CD14+ monocytes (n=3) were isolated from the PBMCs of healthy controls by MACS 

separation. Primary monocytes were treated with varying concentrations of the MPO 

inhibitor 4-Aminobenzoic Acid Hydrazide (4-ABAH) for 4 hours (A). IL-1β production was 

measured in cell supernatants by ELISA. Cells were subsequently pre-treated with 100μM 

4-ABAH for 30 mins before being stimulated for 4 hours with 200ng/ml LPS, or 5μg/ml 

monoclonal antibody (mAb) directed against MPO or PR3 (n=3, B).  
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3.3.12 MPO and PR3 are Differentially Expressed in Mixed 
Leukocyte Populations and Isolated Monocytes and 
Correlate with Donor Age 

In the Secondary metabolomic profiling cohort (see Chapter 5) additional flow 

cytometry experiments were carried out on dextran sedimented cells and isolated 

monocytes. The dextran sedimented cells are a mixed population of leukocytes –

including neutrophils – deplete of red blood cells, and are representative of whole 

blood. Cells were prepared and stained as described in Section 2.8 and 

fluorochromes used are shown in Table 3.2.1. The percentage of MPO+ and PR3+ 

cells were calculated using fluorescence-minus-one controls for the dextran and 

monocyte fractions respectively (Figure 3.3.12A and 3.3.12B). CD14+ cells were 

identified from dextran fractions and represented 5.79% (±1.83%) of total dextran 

cells. There was substantial variation in MPO and PR3 expression among donors, 

accounting for 54.80% and 28.13% of total variation in the dextran and monocyte 

fractions, respectively. There was no significant difference in MPO and PR3 

expression in the dextran fraction. Isolated monocytes however showed significantly 

higher PR3 expression than MPO (Figure 3.3.12B) with >95% PR3+ cells in all 

donors. The percentages of both MPO+ and PR3+ monocytes increased after 

monocyte isolation (Figure 3.3.12C and 3.3.12D). This increase was much more 

pronounced in PR3+ cells. Of note, three groups emerge in the isolated monocyte 

in terms of MPO surface expression: high, medium, and low (Figure 3.3.12B).   

 

We also assessed the influence of age and sex on surface ANCA expression. 

CD14+ monocytes in the dextran sediment had a small but significant inverse 

association with age for MPO expression only (Figure 3.3.13A). This effect was 

however lost after MACS isolation (Figure 3.3.13B). PR3 expression showed no 

association with age in neither the dextran monocytes nor the MACS isolated 

monocytes. Only 3 of the 24 donors in this cohort were female, and there were no 

detectable associations of sex with surface ANCA expression (data not shown). 

From these results we can conclude that the process of monocyte isolation 

increases surface ANCA antigen expression, and that there appears to be a vague 

association between age and ANCA surface expression. 
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Figure 3.3.12: MPO and PR3 Expression on Surface of Monocytes in Dextran 

Sediment (Whole Blood) and after CD14+ MACS Isolation. CD14+ monocytes were 

isolated from the PBMCs of healthy controls by MACS separation. Freshly isolated 

monocytes were stained for flow cytometry with antibodies directed against CD14, MPO, 

PR3, and a cell viability stain. Monocytes and dextran sediment (representative of whole 

blood) were analysed by flow cytometry and live CD14+ cells assessed for MPO and PR3 

surface expression. Percentages of MPO and PR3 positive cells in dextran (A) and post-

MACS isolation (B). Changes in MPO (C) and PR3 (D) expression during cell isolation. 

  



 

Figure 3.3.13: Correlation of MPO and PR3 Expression on Surface of Monocytes in Dextran Sediment (Whole Blood) or after CD14+ MACS 

Isolation with Donor Age. CD14+ monocytes were isolated from the PBMCs of healthy controls by MACS separation. Freshly isolated monocytes 

were stained for flow cytometry with antibodies directed against CD14, MPO, PR3, and a cell viability stain. Monocytes and dextran sediment 

(representative of whole blood) were analysed by flow cytometry and live CD14+ cells assessed for MPO and PR3 surface expression. The percentages 

of MPO+ and PR3+ cells in the dextran sediment (A) and after MACS isolation (B) were correlated with donor age using Pearson correlation. Simple 

linear correlation was used to calculate best fit lines for MPO (blue) and PR3 (green) and are plotted with 95% confidence intervals (dotted line).  



3.3.13 MPO Surface Expression Determines Extent of IL-1β 
Production in anti-MPO Stimulated Monocytes 

Interpersonal variation appears to influence LPS- and anti-MPO-induced IL-1β 

production from primary monocytes. We hypothesised that these disparities could 

be accounted for by differences in MPO surface expression. Cells were prepared 

and stained as described in Section 2.8 and fluorochromes used are shown in Table 

3.2.2. Assessing MPO surface expression pre-stimulation, we found a strong 

correlation between the percentage of MPO+ monocytes and subsequent IL-1β 

production upon MPO-ANCA stimulation (R2=0.9503, p=0.0048, Figure 3.3.14A). 

This effect was only seen in anti-MPO-treated cells despite higher IL-1β production 

by LPS stimulation (R2=0.2063, p=0.4423, Figure 3.3.14A). A similar pattern was 

observed when assessing median fluorescence intensity (MFI), however this effect 

was not significant (Figure 3.3.14B). However, this may be due to low MFI reported 

in these cells. These findings point to a physiological mechanism of monocyte 

activation by anti-MPO. 

 

 

Figure 3.3.14: Correlation of Baseline MPO Surface Expression with IL-1β Production 

in Stimulated Primary Monocytes. CD14+ monocytes were isolated from buffy coat 

PBMCs by MACS separation. Surface expression of MPO was measured immediately after 

isolation by flow cytometry. Cells were plated and stimulated @37°C for four hours with 

5μg/ml monoclonal antibody (mAb) directed against MPO or 200ng/ml LPS. IL-1β 

production was measured in the supernatant by ELISA. The relationship between IL-1β 

production and the percentage (%) of MPO positive live CD14+ monocytes (A) and the 

median fluorescence intensity (MFI, panel ) of MPO was assessed by Pearson correlation.  
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3.3.14 Monocyte CD54 Expression is Increased During MACS 
Isolation 

Sample processing can affect outcomes in cellular metabolomics investigations. We 

have shown that the process of monocyte isolation increases surface ANCA antigen 

expression (Figure 3.3.12). We next assessed if the process of MACS monocyte 

isolation altered the cell’s function/phenotype using CD54/Intercellular Adhesion 

Molecule-1 (ICAM-1) as a marker of monocyte activation. Cells were prepared and 

stained as described in Section 2.8 and fluorochromes used are shown in Table 

3.2.2. CD54 expression was increased in isolated primary monocytes compared to 

whole blood (Figure 3.3.15A). A smaller increase in MPO surface expression was 

also noted. The percentage of CD54+ or MPO+ cells did not change during the 

course of MACS monocyte isolation (Figure 3.3.15B). This finding suggests that 

changes in monocyte phenotype occur during the course of isolation. Whether these 

changes affect the outcomes of immunological and metabolic readouts remains to 

be seen. 

 

 

Figure 3.3.15: Changes in Surface Expression of CD54 and MPO on Primary 

Monocytes in Whole Blood and after MACS Isolation. CD14+ monocytes were isolated 

from the PBMCs of healthy controls by MACS separation. Cells were stained for flow 

cytometry with antibodies directed against CD14, MPO, CD54, and a cell viability stain. 

Surface expression of CD54 and MPO in CD14+ monocytes was measured in whole blood 

and after MACS isolation using flow cytometry. MFI (A) and the percentage of positive cells 

(B) was determined for both markers. Results for each marker were analysed by paired t-

test and Holm-Šídák’s multiple comparisons test. Results are plotted as mean ± standard 

error of the mean (SEM). 



3.3.15 Anti-MPO Stimulation Alters Chemokine Release at a 
Transcriptional Level 

Previous work from our lab profiled ANCA-stimulated monocyte supernatants using 

the OLINK inflammation panel [244]. This panel measures 92 inflammation-related 

proteins, of which 55 were detectable in monocyte supernatants. Significant 

alterations were found in a number of protein biomarkers in anti-MPO treated 

monocyte supernatants with a less pronounced response in anti-PR3 stimulated. A 

selection of these biomarkers altered by anti-MPO stimulation were chosen to be 

analysed by quantitative reverse transcription PCR (RT-qPCR, see Section 2.6). Of 

those which were consistently detected by qPCR, anti-MPO was found to 

significantly increase C-X-C motif chemokine ligand (CXCL)-5 and decrease 

CXCL10 expression (Figure 3.3.16) when compared to isotype controls. Anti-MPO 

did not alter expression of IL-10 receptor subunit alpha (RA) or oncostatin M (OSM), 

suggesting that secretion of these proteins is regulated at a post-transcriptional 

level. There were no significant differences in LPS-stimulated cells for any of the 

measured genes. These results show that the alterations in CXCL5 and CXCL10 

release occur at the transcriptional level. 

 

Figure 3.3.16 Changes in Relative Gene Expression of Inflammatory Proteins with 

Altered Secretion Following ANCA Stimulation. CD14+ monocytes (n=5) were isolated 

from the PBMCs of healthy controls by MACS separation. Cells were plated and stimulated 

@37°C for 4 hours with 200ng/ml LPS, 5μg/ml monoclonal antibody (mAb) directed against 

MPO or 200ng/ml LPS (n=5). RNA was isolated and changes in gene expression measured 

by qPCR (see Section 2.6). Fold change was calculated relative to unstimulated cells (grey 

dotted line) and statistical analysis performed using t-test compared to isotype controls. 

CXCL: C-X-C motif chemokine ligand; IL-10RA: Interleukin 10 Receptor Subunit Alpha; 

OSM: Oncostatin M.  
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3.3.16 Cell Clumping is Increased in ANCA-Stimulated Cells 
Through routine microscopy inspection of cell stimulation plates, we observed slight 

morphological changes in monocytes after stimulation. LPS- (and to a lesser extent, 

ANCA-) stimulated cells appear to cluster or “clump” together whereas unstimulated 

cells remained distanced from one another and remain consistent in appearance 

after plating. To investigate this, we prepared cytopsin slides and stained and 

imaged as described in Section 2.7. The total number of clumps was defined for 

each treatment group for each biological replicate. Due to processing errors two 

replicates were excluded form analysis for a total n=22. The total number of clumps 

was significantly increased in anti-PR3 stimulated monocytes compared to 

unstimulated cells (Figure 3.3.17). Clumping for LPS- and anti-MPO-treated cells 

was also increased but did not reach statistical significance (p=0.0889 and p=0.745 

for LPS and anti-MPO, respectively). These statistical effects are likely confounded 

by the high level of zero values, as many slides showed no evidence of clumping in 

any treatment groups. Clumps in LPS-treated cells were generally larger, perhaps 

indicating a greater degree of cellular activation. The precise effects of this cell 

clumping phenomenon and its relation to inflammatory and metabolic outputs are 

not clear.  

 

Figure 3.3.17: Effects of ANCA Stimulation on Cell Clumping in Primary Monocytes. 

CD14+ monocytes (n=22) were isolated from the PBMCs of healthy controls by MACS 

separation. Primary monocytes were stimulated with 5μg/ml monoclonal antibody (mAb) 

directed against MPO or PR3, or 200ng/ml LPS for 4 hours. Cytospin slides were prepared 

and stained as described in Section 2.7 and clumps of cells quantified using light 

microscopy. Median (solid lines) and interquartile values (dotted lines) are plotted for each 

treatment group as truncated violin plots.  
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3.4 Discussion 

3.4.1 Optimising Cell Culture Conditions & Experimental 
Protocols 

This project is designed to build on previous work from our group investigating 

monocytes in AAV [203, 238, 244]. There were only slight improvements to be made 

to these experimental protocols – namely blood source (Figure 3.3.1), monocyte 

isolation protocol (Figure 3.3.2), and adaptations for metabolomic analysis. These 

assays were easily scalable to larger plate formats (Figure 3.3.3) and preferable for 

metabolite extraction protocols (see Chapter 4 for full details). Buffy coats (BC) are 

routinely used in immunological investigations as a source of healthy leukocytes. In 

our experience however BC monocytes have had highly variable results, and high 

background production of inflammatory cytokines (Figure 3.3.1). Differences in 

cytokine production at baseline and after LPS stimulation have been noted in BC 

preparations compared to fresh blood samples, with additional decreases in 

monocyte recovery in BCs [306]. We speculate that this may be due to the extended 

storage times of BCs. The sample storage conditions and time since acquisition of 

IBTS BCs are not specified. Sample aging can have profound effects on cytokine 

release by monocytes [307]. Classical CD14++CD16- monocytes have a lifespan of 

roughly 24 hours [308, 309], and the higher IL-1β production in haemochromatosis 

monocytes is likely a result of the shorter time ex vivo, despite some variation 

between donors (Figure 3.3.1).  

 

Haemochromatosis blood also comes with additional advantages: it is fresh, a high 

volume of blood is available, and it allows collection of basic demographic info (age 

and sex) from donors. Blood donation from people with haemochromatosis is safe, 

tolerated, and accessible [310]. For these reasons we have chosen to use fresh 

blood for our monocyte metabolomic profiling experiments. Use of blood from 

people with high iron levels does come with caveats. To date there have been no 

metabolomics investigations comparing haemochromatosis patients to healthy 

controls. One study compared metabolic syndrome patients with and without  

hyperferritinaemia to healthy controls, revealing differences in some amino acid and 

long chain FAs between the two patient groups [311]. This group concluded that 

hyperferritinaemia is linked to impaired glucose homeostasis among people with 

metabolic syndrome. They also note a trend toward increased inflammation with 

iron overload in these patients. Dysfunctional iron metabolism can affect immune 
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cell function and monocyte differentiation [312]. Ultimately the goal of this work is to 

generate hypotheses that can be validated in the relevant patient cohorts. We would 

aim to validate these findings in AAV patients and a suitable age- and sex-matched 

cohort of (relatively) healthy controls to confirm true metabolic associations. 

 

Much of the AAV literature focusses on functional work in neutrophils. These 

experiments typically use polyclonal IgG antibodies derived from AAV patients to 

stimulate cells. Indeed, polyclonal antibodies have increased pro-inflammatory 

cytokine production in ANCA-stimulated monocytes [197, 203]. Despite these 

findings, none of the polyclonal IgG preparations we tested increased IL-1β 

production in primary monocytes (Figure 3.3.4). TNF-α priming also had no effect 

on IL-1β levels. While this is in contrast to what is seen in the literature, we would 

argue against the use of patient polyclonal antibodies altogether. Patient-derived 

IgG preparations are not sustainable, isolation protocols are neither standardised 

nor well documented, and in our experience have not been reproducible. These 

antibodies are highly patient-specific, though have not been well characterised to 

define pathogenic epitopes. To overcome this and define a more standardised and 

reproducible approach to ANCA stimulation we have opted to use monoclonal 

antibodies (mAbs) in our experiments.  

 

Investigations of ANCA function in neutrophils typically adopt a TNF-α priming step. 

Previous work from our group has shown that this does not enhance pro-

inflammatory cytokine production in ANCA-stimulated monocytes [244]. We further 

confirmed this using polyclonal IgG preparations (Figure 3.3.4) and mAbs (Figure 

3.3.5). TNF-α also has notable effects on cellular metabolism. In neutrophils, lactate 

and phosphocholine levels are increased by low dose TNF-α [313], and lipid 

mediators can suppress cytokine production and dysregulate cell death programs 

in TNF-α primed macrophages [314]. Hypoxia-inducible factor (HIF)-1α is induced 

by TNF-α to promote expression of lactate dehydrogenase (LDH) and pyruvate 

dehydrogenase kinase (PDK) [315], supporting increased glycolysis in activated 

immune cells [316, 317]. TNF-α stimulation can alter glucose, lipid, and 

adipocytokine levels in arthritic murine joints [318], and is also crucial for insulin 

resistance development in obese mice [319]. Given these metabolic disturbances 
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the inclusion of a TNF-α priming step could confound any ANCA-specific effects on 

monocyte metabolism, and was not considered in any further stimulation protocols. 

 

We investigated the use of LPS as a novel priming agent and find it to synergistically 

increase IL-1β when paired with anti-MPO (Figure 3.3.5). Infection often precedes 

onset of AAV; the consequent systemic alterations in leukocyte metabolism caused 

by bacterial endotoxins may thus facilitate (pre-)activation of neutrophils and 

monocytes by ANCA [210, 320]. This may explain the upregulated TLR4 expression 

on AAV patient monocytes [223-226] and suggests an in vivo mechanism where 

LPS primes monocytes to enhance responses to ANCA. There is ample evidence 

of metabolic manipulation of immune cells by LPS. Succinate and itaconate have 

pro- and anti-inflammatory roles in LPS-stimulated macrophages respectively [321]. 

LPS stimulation alters intracellular metabolite levels in macrophages with a 

concurrent shift from OXPHOS to glycolysis [322]. As well as decreasing OXPHOS 

in monocytes [97], LPS can increase ROS production and neutrophil-mediated 

tissue damage [323]. These findings are physiologically relevant in the context of 

AAV, however, introducing LPS to the experimental system will also mask any 

ANCA-specific effects. Given these potentially confounding effects, we have opted 

to exclude any cell priming steps from our metabolomic profiling protocol. Precise 

unravelling of the synergistic LPS/anti-MPO relationship should be a priority of 

future investigations of monocytes in AAV. 

 

One concern with using mAbs was that the presence of sodium azide (NaN3) in 

these antibodies could impact our results. NaN3 is a chemical preservative used to 

prevent bacterial contamination in aqueous laboratory reagents, but can also induce 

apoptosis by altering mitochondrial respiration via cytochrome oxidase inhibition 

[324]. NaN3 is also a potent MPO inhibitor and has also been shown to affect 

monocyte function. Pre-treatment of THP-1 cells with NaN3 inhibited MCP-1 release 

and transcription, and limited LPS-induced CXCL10 and IL-6 production [325]. NaN3 

increases phagocytosis [326] and limits chemotaxis (polarisation) by inhibiting 

oxidative metabolism [327] in primary monocytes. Investigations in foetal cell lines 

[328] confirmed decreased respiratory after NaN3 treatment. However, these 

investigations were carried out at higher concentrations than those found in our 

experimental model. After dilution in experimental assay plates the concentrations 
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of NaN3 were 68.625µM and 38.125µM for anti-MPO and anti-PR3 stimulated cells, 

respectively. At these concentrations (Figure 3.3.6) we did not find any NaN3-

induced functional inconsistencies in primary monocytes. Thus, monoclonal 

antibodies are suitable for use in metabolic profiling experiments in primary immune 

cells. 

3.4.2 Pilot Immunologic Readouts: LC-MS, Flow Cytometry, and 
Functional Inhibition 

Previous experiments from our group have profiled monocyte metabolism after four 

hours of ANCA stimulation. However, most peer-reviewed publications investigating 

monocyte metabolomics are in timepoints ≥24 hours [96, 97, 124, 302]. Zhu et al. 

comprehensively profiled the monocytic THP1 cell line to replicate a sepsis model 

monitoring acute inflammation to resolution [96]. This detailed the switch from 

anabolic energy consumption during early immune activation (0-8h), to a catabolic 

energy-conserving process during immune deactivation (24-48h), before re-

establishing energy homeostasis during resolution (48-96h). During this time course 

however, monocytes would begin to differentiate into macrophages and alter their 

functionality. This is also true for in vitro investigations of innate immune 

metabolism, which are initiated in monocytes, but the subsequent epigenetic 

changes and surges in cytokine production occur in polarized macrophages [20, 21, 

329, 330]. One metabolomic analysis of primary monocytes did detect increases in 

intracellular lactate upon LPS stimulation as early as 1 hour post stimulation, 

confirming a rapid increase in glycolysis in these cells [85]. We have also found 

ANCAs to rapidly increase glycolysis immediately after stimulation, an effect that 

was maintained up to 4h with anti-MPO stimulation [238]. Our pilot analysis of 

monocyte metabolomics at 24h did find significant increases in some amino acids, 

including serine (Figure 3.3.7). Future experiments will examine the more premature 

changes in ANCA-induced metabolism at 4 hours. 

 

Another pilot LC-MS analysis was carried out in a cohort of cells due to an 

abundance of linked data. Here we uncovered correlations of intracellular amino 

acids with rates of glycolysis in ANCA-treated monocytes (Figure 3.3.8). 

Unfortunately, we were only able to reliably detect amino acids (with the help of 

synthetic standards) given the low cell number. Although these samples were useful 

for preliminary results the number of detectable metabolites were limited as cells 
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were stored in a phosphoproteomic buffer (0.2ml 1M Na2CO3,1.8ml H2O, 0.2ml 10X 

phosphatase inhibitor, 80µl 25X protease inhibitor, 0.4ml 100mM sodium 

pervanedate) and further diluted with extraction buffer before MS analysis. Despite 

this these samples were useful to optimise a number of MS conditions, including 

preliminary extraction solvent comparisons, injection volumes, MS vial inserts, 

gradients, flow rates, column types, and mobile phases. 

 

Our two pilot LC-MS analyses identified serine as a potential metabolic marker of 

ANCA activation in primary monocytes (Figure 3.3.7 and 3.3.8). Serine is an 

important fuel for cancer metabolism [331-333], and small molecule inhibitors of 

serine synthesis [334] have been developed as potential therapies. One such 

inhibitor is CBR-5884 which targets 3-phosphoglycerate dehydrogenase to limit 

serine production via the de novo serine synthesis pathway directly branching from 

glycolysis [303]. We found that inhibiting serine synthesis completely abrogated 

LPS-induced IL-1β production (Figure 3.3.9). That IL-1β production recovered by 18 

hours indicated that these cells replenish serine levels via alternate metabolic 

pathways, demonstrating the metabolic plasticity of primary monocytes. Serine 

synthesis was shown to be essential for IL-1β and TNF-α production in murine 

macrophages [335]. This may be the first metabolite found to regulate cytokine 

production in AAV. However, there was high background in both this and our MPO 

inhibition experiments (see Figure 3.3.11), which may influence the utility of these 

assays. The concentration of CBR-5884 used was also above the IC50 (33µM), and 

cell viability may have been affected by limiting serine anabolism. Similar issues 

were evident in our MPO inhibition experiment. MPO-ANCA can influence MPO 

oxidation activity and maybe associated with more severe disease [336, 337]. As 

such, inhibition of MPO activity has been proposed as an anti-inflammatory 

treatment strategy for AAV [197, 304]. In addition these inhibitors may have off-

target effects contributing to these outcomes. While our results were promising, low 

n numbers have limited the interpretability of these results. Furthermore, these 

investigations used a novel MPO inhibitor different to our 4-ABAH compound, 

further limiting comparisons between these works. These experiments should be 

repeated and expanded in larger cohorts with additional MPO and serine synthesis 

inhibitor candidates. 
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Monocyte MPO and PR3 surface expression is dysregulated in AAV [192, 203, 223] 

and can be altered by other inflammatory stimuli [227]. Indeed, we found 

inconsistencies in ANCA antigen surface expression in our monocyte cohort. Both 

MPO and PR3 expression are increased during CD14+ isolation (Figure 3.3.12). 

This effect was much more pronounced in PR3+ cells, an interesting outcome given 

that monocytes typically do not produce IL-1β (or other inflammatory cytokines) in 

response to anti-PR3 stimulation. A correlation between age and MPO surface 

expression in whole blood (dextran) monocytes was also revealed (Figure 3.3.13), 

but this did not maintain significance after monocyte isolation. As whole blood 

represents the immune environment in its most natural form, we can reason that 

this correlation is accurate. Finally, the percentage of MPO+ monocytes at baseline 

was strongly predictive of IL-1β production upon subsequent anti-MPO stimulation 

(Figure 3.3.14). ANCA antigens are constitutively expressed on AAV patient [192] 

and HC monocytes [203]. Whether this is a true effect or a result of technical 

alterations to cell phenotype remains to be seen. These effects should be further 

examined in whole blood and in larger patient cohorts. 

 

Monocyte surface markers including CD14 ,PD-L1, CD63, CD64, and various 

integrins are dysregulated in AAV [1, 187]. Adhesion molecules are increased on 

AAV patient monocytes and after ANCA stimulation (see Section 1.4.2.4). In 

attempting to examine the extent of CD54 expression on primed monocytes we 

found that the process of CD14+ isolation significantly increases CD54 MFI (Figure 

3.3.14). Far from a novel finding, this phenomenon was first described in by Stent 

et al. in 1997 [338]. Changes in immune cell surface markers during isolation can 

affect findings in cell phenotype investigations. As a result there is a push to use 

whole blood to limit inevitable technical variation related to sample preparation in 

immunologic investigations [339].  

3.4.3 Combining Metabolomic & Immunological Readouts 
These experiments allow for a multitude of parallel immunological and metabolic 

readouts. We used RT-qPCR to validate the findings of a previous proteomic screen 

of monocyte supernatants [244]. We did confirm that the modest increase in CXCL5 

and the decrease in CXCL10 release by anti-MPO stimulation occurs at the 

transcriptional level (Figure 3.3.16). CXCL5 can be induced by a range of pro-

inflammatory cytokines and is a prominent neutrophil activator. Its expression is NF-
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κB dependent and can be activated by IL-1β [340]. Transcripts are also highly 

upregulated in kidneys of AAV patients with crescentic glomerulonephritis [341]. 

Conversely, CXCL10 (also known as IP-10) showed a marked decrease in 

expression in anti-MPO stimulated cells. These results could not be validated by 

ELISA as CXCL10 expression was undetectable in any of the treatment groups 

(data not shown). This chemokine is secreted in response to IFN-γ and is a 

biomarker and therapeutic target for several autoimmune diseases [342]. Inhibition 

of IFN-γ reduced CXCL10 expression and macrophage infiltration in a type of large-

vessel vasculitis [343]. The decreased expression in ANCA-stimulated monocytes 

is unexpected. This phenomenon may represent a negative feedback loop to 

prevent prolonged inflammation. Recent work from our group exposed that AAV is 

not in fact an interferonopathy as once theorised [245]. One incidental finding from 

this work was that serum CXCL10 was increased in treatment-naïve AAV patients 

with active disease but was lowered after treatment and into remission. Whether or 

not these changes in gene expression are metabolically regulated will be a focus of 

future experiments. Berti et al. characterized distinct circulating cytokine profiles for 

MPO- and PR3-AAV [183] and found unique signatures for clinical and molecular 

subgroups of AAV. However, none of the indicated cytokines were implicated in our 

analysis of monocyte supernatants. One reason for this is that our analysis reflects 

ANCA-driven inflammation at a cellular level rather than systemically. It may also be 

the case that monocytes are not involved in the pathogenesis of PR3-AAV and are 

sensitive only to activation by MPO antibodies. Additional work is needed to confirm 

if these genes are related to monocyte metabolism. 

 

Metabolomic sample preparation protocols have been optimised not just for 

metabolomics, but also with potential for subsequent integrated multi-omics 

experiments. Proteins contained in the cell lysate pellet can be isolated and 

quantified by Western blot. Our BCA data that also shows high levels of protein 

preserved in the cell lysis pellet (see Chapter 4), where cell lysates preserve protein 

contents after metabolite extraction. This protein could potentially be used in 

Western blot experiments. This would provide a fuller understanding of biological 

changes taking place resulting in alterations to the monocyte metabolome. 

Extraction methods may also conserve RNA for subsequent extraction and parallel 

analysis [56, 344]. 
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The Mito- and Gluco-Stress tests are commonly used to measure rates of OXPHOS 

and glycolysis, respectively. Direct injection of stimuli to Seahorse assay plates can 

also be used to measure simultaneous, real time changes in OCR and ECAR [300] 

and has been used to assess real-time metabolic effects of ANCA stimulation [238]. 

Attempts to aid concomitant experiments by using the same ANCA stimulated 

monocytes analysed by Seahorse for subsequent metabolomic analysis, have not 

yet been successful. Immobilisation of suspension cells is an essential step for 

Seahorse analysis. Using previously optimised Seahorse conditions [244], this was 

achieved using a commercially available adhesive protein mixture: Cell-Tak™. To 

account for this, we modified our optimised sample preparation protocol to suit 

adherent cells by taking inspiration from work by Fei et al. in macrophages [322, 

345]. This combined quenching/extraction protocol was developed with additional 

considerations for these now adherent monocytes, but was unable to extract 

sufficient intracellular content using the previously optimised readout of protein 

levels in metabolite and cell pellet fraction (Figure 3.3.10). Acidified extraction buffer 

has been suggested for extraction of metabolites from mammalian cells and can 

even improve quenching efficiency [27]. Acidifying the 80% MeOH with formic acid 

may disrupt the efficiency of the Cell-Tak™ and allow improved removal of cells 

from Seahorse plates.  

 

Even if removal of cells from Seahorse plates for metabolomic analysis was a 

feasible option, differences in Seahorse media and other commercial media 

formulations may confound findings of parallel experiments [98, 301, 346]. The 

Seahorse XF media is a proprietary formulation and thus direct comparisons of 

metabolic effects are not easily accounted for. Furthermore, FBS is not added to the 

Seahorse media as it can interfere with the sensitivity of the probes and 

effectiveness of the Cell-Tak adhesive. This omission could also affect metabolomic 

readouts, as FBS is a source of nutrients and essential for cell viability [301]. Finally, 

the use of Cell-Tak to adhere monocytes for Seahorse analysis may interfere with 

normalisation of metabolic flux data [347]. These findings mean that cells used for 

Seahorse experiments will likely not be compatible for subsequent metabolomic 

analysis. These experiments should be carried out in parallel where appropriate. 
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The optimised experimental outline for metabolomic profiling of primary monocytes 

is shown in Figure 3.4.1. 

 

 

 

Figure 3.4.1: Optimised Experimental Outline for Metabolomic Profiling of Primary 

Monocytes. Monocytes are isolated from healthy blood by CD14+ MACS separation and 

stimulated for 4 hours with 5μg/ml monoclonal anti-MPO or anti-PR3 for 4 hours. 

Supernatants are separated from cells and used for ELISA, and metabolites are extracted 

from cell pellets for analysis by LC-MS. Additional RT-qPCR and Western blot experiments 

can be carried out on cell pellets. Parallel Seahorse, flow cytometry, and histology 

experiments allow simultaneous measurement of multiple cellular processes.  



 

 

Chapter 4: Optimisation of LC-
MS Metabolomic Profiling of 

Primary Monocytes  
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4.1 Introduction 
Preparing a metabolomic profiling investigation requires careful consideration. The 

steps involved in the design and execution of such an experiment are summarised 

in Figure 4.1.1 (adopted from [50]). A non-exhaustive collection of potential 

variables for consideration are also shown for each step. Experimental design must 

be carefully considered to allow protocols to be adapted for metabolomic profiling. 

Biofluids are commonly used in these types of investigations to measure systemic 

physiological effects in health and disease. Serum, plasma, and urine can be easily 

and routinely obtained, and established processing protocols are highly 

reproducible even in large-scale population studies [64, 348-350]. Sample 

preparation protocols for metabolomic analysis of yeasts and bacteria are also well-

established. However, these findings will not be universally applicable to primary 

human cells because of substantial, inherent biochemical differences in eukaryotic 

and prokaryotic cells. 

 

 

Figure 4.1.1: Summary Overview of the LC-MS Experiment Optimisation Pipeline. 

Some potential sources of variation/additional considerations are linked below the 

experimental stages. Adapted from Leon et al. [50]. 

 

Pre-analytical factors and even transport and storage conditions [351] can introduce 

variation in blood and urinary metabolomics [348]. Cellular metabolomics – although 

more specific in application and focus – introduces several additional variables into 

the experimental protocol. Cell culture conditions [301], cell number [352, 353], 

media formulations [98, 301, 346], incubation time/temperature [301], and 

harvesting method [71], can all affect results of metabolomics investigations. 

Cellular metabolomics in primary human cells combines the complexities of cellular 

metabolomics with the multi-faceted interpersonal variability of the human 
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metabolome [47, 354, 355]. This underlies the requirement for optimised sample 

preparation protocols and LC-MS methods for cellular metabolomic profiling. 

 

Subtle changes in mobile phases, chromatography columns, or extraction protocols 

can drastically alter the recovery of metabolite classes [46]. The response of the 

metabolites to LC-MS is further influenced by the properties of the compound, eluent 

composition, and instrument [356]. Quantitative measurement can also be a 

challenge, as different compounds ionize to different extents in an electrospray 

(ESI) source. LC-MS methods must be tailored to the experimental design with the 

target compounds in mind. Despite these challenges LC-MS remains the gold 

standard for untargeted metabolomic profiling, and is the primary analytical platform 

used here for metabolomic analysis of ANCA-stimulated monocytes. 

 

The LC-MS data analysis pipeline is another crucial step in untargeted metabolomic 

analysis requiring careful consideration and optimization. This process can be 

strengthened with appropriate quality and experimental controls [63, 64]. Given the 

many sources of variability cellular metabolomics studies, data normalization is an 

essential step. As with sample preparation, there is no single superior normalisation 

method universally applicable to untargeted metabolomics. Several sample- and 

data-based normalization approaches are outlined in Section 1.2.2.1. To date these 

methods have not been examined for their relevance to primary human cell 

metabolomics.  

 

Preserving the biological phenotype while ensuring metabolites are accurately and 

appropriately measured is key for metabolomics investigations. In this work, we 

have adapted established experimental methods [203, 238] and optimised parallel 

functional readouts (see Chapter 3) to further characterise the role of monocyte 

metabolism in AAV. Sample collection protocols and culture conditions were 

optimised for study of early changes in monocyte metabolism in response to ANCA 

stimulation. The process of optimising LC-MS methods and sample processing to 

complement these findings and develop a metabolomic workflow are described in 

this chapter.  
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4.2 Experiment Description 

4.2.1 Aims 
I. To optimise sample preparation and LC-MS methods for metabolomic 

profiling of primary human monocytes. 

II. To optimise LC-MS data analysis workflows for untargeted metabolomic 

analysis of primary human monocytes. 

4.2.2 Experiment Outline 
This chapter describes the optimisation of LC-MS profiling and analysis methods to 

facilitate metabolomic profiling of primary human monocytes. This includes technical 

details of experimental design, sample preparation, LC-MS methods, data analysis 

workflows, and metabolomic data normalisation. A high-level overview of the LC-

MS optimisation process is outlined in Figure 4.1.1. Conditions for monocyte culture 

and stimulation utilised in this work are described in Section 2.2. The optimised 

methods described here are used to characterise the metabolomic response of 

CD14+ monocytes to LPS and ANCA as described in Chapter 4. 

4.2.3 Methods 

4.2.3.1 Sample Preparation Optimisation 
To optimise sample preparation for LC-MS metabolomics, three commonly used 

extraction solvents and lysis protocols we compared: methanol (MeOH), acetonitrile 

(ACN), and a mix of ACN, MeOH and water (ACN:MeOH:H2O, 2:2:1). Monocytes 

(n=3) were isolated from healthy controls as described in Section 2.2. Unstimulated, 

freshly isolated monocytes (1x106) were aliquoted into Eppendorf tubes, centrifuged 

at 400g for 7 mins at 4ºC, and supernatants removed. Cells were rapidly quenched 

on dry ice and stored on wet ice for the duration of the experiment. Cells were 

resuspended in 1ml of the relevant extraction solvent (-20ºC) and stored on ice 

throughout the protocol. Cells were subjected to one of three lysis protocols: 

sonication, freeze-thaw, or vortexing. For sonication, cells were sonicated in an ice 

bath sonicator (Ultrawave QS3, F00239) for 10 min. For freeze-thawing, cells were 

placed on dry ice for 30 seconds then immediately into a 37ºC water bath for 90 

seconds. This freeze-thaw cycle was repeated three times. For vortexing, cell tubes 

were vortexed for 15 seconds and returned to dry ice. This vortexing cycle was 

repeated three times. All cells were returned to dry ice after lysis and centrifuged at 

12,000g for 15mins at 4°C. The metabolite fraction was stored at -80°C until 
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analysis. The experimental outline for this sample preparation experiment is outlined 

in Figure 4.2.1. 

 

Figure 4.2.1: Experimental Outline of Sample Preparation Optimisation Experiment. 

CD14+ monocytes were isolated from PBMCs of healthy controls by MACS separation 

(n=3). Metabolites were extracted using one of three extraction solvents and one of three 

lysis methods as described in Section 4.2.3.1. 

 

4.2.3.2 Sample Preparation Optimisation – LC-MS Analysis 
A comprehensive literature review was carried out to identify methods capturing a 

broad range of metabolite (and lipid) classes. Several LC-MS methods were trialled 

in pilot experiments, modifying mobile phases, gradients, and columns. Two key LC-

MS methods were used in the course of this optimisation work and are modelled on 

those used by Metabolon. The first was a reverse phase (RP) method using a C18 

column based on work from Meissen et al. [357] and referred to henceforth as “C18”. 

Samples were analysed in both ESI+ and ESI- using this method. The second LC-

MS method used a hydrophilic interaction chromatography (HILIC) method using a 

zwitterionic HILIC phase (HILIC-Z) column and is described in detail by Hsaio et al. 

[42]. For these experiments this method was run only in ESI- (see Section 4.3.1 and 

4.4.2). Full details of the LC and MS conditions for these methods are shown in 

Tables 4.2.1 and 4.2.2, respectively. Samples were randomised and analysed using 

both LC-MS methods.  

 

 



 C18 ESI+ C18 ESI- HILIC ESI- 

LC System 
Agilent 1290 Infinity LC, G7110B Iso 

Pump, G7120A Binary Pump 

Agilent 1290 Infinity LC, G7110B Iso 

Pump, G7120A Binary Pump 

Agilent 1290 Infinity LC, G7110B Iso 

Pump, G7120A Binary Pump 

Column 

Agilent ZORBAX RRHD Eclipse Plus 

C18, 95Å, 2.1 x 150 mm, 1.8 µm 

(PN959759-902) 

Agilent ZORBAX RRHD Eclipse Plus 

C18, 95Å, 2.1 x 150 mm, 1.8 µm 

(PN959759-902) 

Agilent InfinityLab Poroshell 120 HILIC-Z, 

2.1 x 100, 2.7 µm, PEEK-lined 

(PN675775-924) 

Mobile 

Phase A 
H₂O + 5mM PFPA H₂O + 5mM PFPA 

H₂O + 10mM C₂H₇NO₂ pH9 + 5uM 

additive 

Mobile 

Phase B 
50% ACN + 50% H₂O 50% ACN + 50% H₂O 

90% ACN + 10mM C₂H₇NO₂ pH9 + 5uM 

additive 

Flow 

Rate (ml/min) 
0.40 0.40 0.25 

Gradient 

(Timepoint, 

%Mobile A / 

%Mobile B) 

0.5min 97.0/3.0% 

10.0min 35.0/65.0% 

10.1min 10.0/90.0% 

12.0min 10.0/90.0% 

12.1min 50.0/50.0% 

14.0min 50.0/50.0% 

14.1min 97.0/3.0% 

18.0min 97.0/3.0% 

0.5min 97.0/3.0% 

10.0min 35.0/65.0% 

10.1min 10.0/90.0% 

12.0min 10.0/90.0% 

12.1min 50.0/50.0% 

14.0min 50.0/50.0% 

14.1min 97.0/3.0% 

18.0min 97.0/3.0% 

2.0min 10.0/90.0% 

12.0min 60.0/40.0% 

13.0min 80.0/20.0% 

16.0min 80.0/20.0% 

17.0min 10.0/90.0% 

25.0min 10.0/90.0% 

Column 

Temperature (

°C) 

50 50 30 

Injection 

Volume (μL) 
5 5 5 

Autosampler 

Temperature 

(°C) 

4 4 4 

Table 4.2.1: Liquid Chromatography (LC) Conditions for LC-MS Methods Used in Sample Preparation Optimisation Experiments.  
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 C18 ESI+ C18 ESI- HILIC ESI- 

MS System Agilent 6545 LC/Q-TOF (G6545B) Agilent 6545 LC/Q-TOF (G6545B) Agilent 6545 LC/Q-TOF (G6545B) 

Ionization Mode Dual AJS ESI Dual AJS ESI Dual AJS ESI 

Ionization Polarity Positive Negative Negative 

Gas Temperature (°C) 200 200 200 

Drying Gas (L/min) 10 10 10 

Nebulizer Pressure (psi) 40 40 40 

Sheath Gas Temperature (°C) 300 300 300 

Sheath gas Flow (L/min) 12 12 12 

Capillary Voltage (V) 3000 3000 3000 

Nozzle Voltage (V) 0 2000/0 0 

Fragmentor (V) 120 120 125 

Skimmer (V) 65 65 65 

Octopole 1 RF Voltage (V) 750 750 750 

Acquisition Range (m/z) 50-1000 50-1000 50-1000 

MS Acquisition Rate 5 spectra/sec 5 spectra/sec 3 spectra/sec 

Reference Mass(es) (m/z) 121.0509, 922.0098 68.9958, 119.0363, 1033.9881 68.9958, 119.0363, 980.0164 

Table 4.2.2: Mass Spectrometry (MS) Conditions for LC-MS Methods Used in Sample Preparation Optimisation Experiments. 



4.2.3.3 Sample Preparation Validation 
To validate the optimised sample preparation and LC-MS methods, PBMCs and 

monocytes were isolated from healthy donors (n=3) as described in Section 2.2. 

5x106 cells were plated in 6 well plates and stimulated with 5µg/ml of isotype control, 

(5µg/ml Mouse IgG1, Merck, CBL610), monoclonal anti-MPO (Meridian, H87207M) 

or monoclonal anti-PR3 (Merck, MABT340) for 4 hours. Cells were gently pipetted 

and spun at 400g for 7mins at room temperature. Supernatant was removed and 

cells were quenched on dry ice. 300µl of 80% MeOH was added to each tube and 

cells were vortexed for 30 seconds. Cells were then sonicated in an ice bath for 1 

minute before vortexing for another 30 seconds. Samples were spun at 4,000g for 

20 mins at 4ºC and the metabolite fraction was removed to a new Eppendorf tube. 

2µl of each sample was combined into a PooledQC sample and was run three times 

at the beginning and the end of the run. Samples were kept on dry ice between 

extraction steps and stored at -80ºC before processing. Samples were run using the 

HILIC-Z method described in Section 4.2.3.2. 

 

4.2.3.4 Normalisation Assessment 
Refined data analysis workflows were developed for targeted and untargeted 

analysis using the Agilent MassHunter software suite and are described in Section 

2.9. To account for the biological variation inherent in primary human cells, a 

multitude of normalisation techniques were applied. These included both sample- 

and data-based methods and are outlined in Figure 4.2.2. A total of 41 normalisation 

strategies were assessed. Targeted data from the primary metabolomic profiling 

experiment (see Section 5.3 and Figure 5.2.1) was used to test the efficacy of 

normalisation methods. This included six biological replicates stimulated for four 

hours with 200ng/ml LPS, 5µg/ml anti-MPO, and 5µg/ml anti-PR3. Metabolites were 

extracted using the optimised extraction protocol (See Section 2.9.2) and analysed 

by LC-MS as described in Section 2.9.3. Data was primarily analysed using Mass 

Profiler Professional (MPP, Agilent Technologies, Version 15.1) where raw AUC 

data from the targeted analysis (see Section 2.9.5 & 2.9.6) was imported in .csv 

format from MassHunter ProFinder (Agilent Technologies, B.10.0). The MPP data 

import wizard integrates a log2 transformation step and all subsequent normalisation 

results are compared to log2 transformation alone. 
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A number of criteria were used to assess the quality of different normalised data 

based on those applied by NOREVA [102]. Intragroup variation was assessed by 

calculating %CV and median absolute deviation (MAD) for the PooledQC and 

unstimulated (NS) cells. Principal Component Analysis (PCA) plots were generated 

to visualise the degree of separation between treatment groups using LPS as a 

positive control and comparing to the NS group. Receiver operating curves (ROCs) 

for these metabolites were generated for each of the normalisation methods to 

determine the efficacy of separation between the LPS and NS groups with the 

curve’s AUC used as a performance metric. All criteria were graded and assessed 

for the 41 normalisation techniques. Results for the top-performing normalisation 

strategies are shown in Table 4.3.1. 

4.2.3.4.1 NOREVA Normalisation 
The online NOREVA 1.0 platform (http://idrblab.cn/noreva2017/, [102]) was used for 

additional in silico normalisation. Raw AUC data for samples and PooledQCs were 

uploaded and pre-processed using the default settings. NOREVA completes a QC-

based signal correction step as standard by robust LOESS signal correction (QC-

RLSC). This corrects for intra-run variability on a per-metabolite basis. The default 

settings specify a local polynomial fit with a filter criterion and bias-variance trade-

off of 0.8 and 0.75, respectively. Missing values were imputed using the k-nearest 

neighbour (KNN) algorithm. Data was normalised using the appropriate methods 

outlined in Figure 4.2.2. Normalised data were exported in .csv format for 

subsequent analysis in MPP. The NOREVA workflow does not specify a log 

transformation step as standard, and the log2 transformation was not applied to 

these data during import. 

  

http://idrblab.cn/noreva2017/


 

Figure 4.2.2: Summary of Normalisation Techniques Applied to Metabolomic Data 

from Stimulated Primary Monocytes. The primary software used for normalisation was 

Agilent MassProfiler Professional (MPP, Agilent Technologies, Version 15.1) and the online 

NOREVA platform [102]. External Scalar values were primarily sample-based methods, 

while baselining, MPP Algorithms, and NOREVA were data-based. Statistical normalisation 

methods are shown in blue and biological normalisation techniques in orange.  



4.2.3.4.2 BCA Assay Optimisation with PBMCs 
To account for the low protein levels in the metabolite fraction and to test the 

compatibility of the extraction solvent (80% MeOH) with the BCA assay, a number 

of pilot experiments were carried out. First, standard curves ranging from 400-

6.25µg/ml BSA were prepared using MeOH and PBS. Solutions were gently heated 

and vortexed until completely dissolved. Protein levels in these standards were 

measured using the Pierce™ BCA Protein Assay (Thermo Scientific, 23227), as per 

the manufacturer’s standard test tube protocol.  

 

To assess the efficacy of using metabolite fraction protein levels as a surrogate for 

cell number, PBMCs were isolated from healthy buffy coat samples as described in 

Section 2.2.2. Cells were counted and spun down in Eppendorf tubes ranging from 

1-10x106 cells per tube. Metabolites were extracted using the optimised extraction 

method described above (see also Section 2.9.2) and protein levels measured by 

BCA assay. Here 12.5µl of metabolite fraction was added to a flat-bottom 96-well 

plate. Working reagent was freshly prepared and 100µl added to wells and mixed. 

Plates were sealed tightly with parafilm and left to incubate at 37°C for 30 mins. 

After cooling to room temperature, the absorbance was measured at 562nm and 

595nm with an Epoch™ Microplate Spectrophotometer (BioTek Instruments, Inc.). 

The plate was again covered and returned to the incubator and a second reading 

was taken after 18 hours of incubation. 

 

The protein pellet was dried down on low setting using a SpeedVac (Savant DNA 

Speed Vac® DNA110). The pellet was then reconstituted in 1ml of warm PBS and 

heated in a 37°C heatblock until completely dissolved. Protein levels were 

measured by BCA as described above. Protein levels were also assessed using a 

NanoDrop™ 8000 Spectrophotometer with the Protein A280 and UV-VIS modules 

in ND-8000 Software Version 1.0 (Thermo Fisher Scientific). DNA concentrations in 

the pellet fraction were measured as described in Section 2.10. This optimised BCA 

protocol has been applied to the primary and validation monocytes profiling cohorts 

and is described in full in Section 2.5.  
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4.3 Results 

4.3.1 Comparison of Solvent and Lysis Metabolite Extraction 
Strategies for Primary Monocytes 

Three extraction solvents and three lysis protocols were compared for their 

effectiveness in extracting useful metabolomic data from freshly isolated, 

unstimulated primary monocytes (see Figure 4.2.1). Samples were analysed using 

three LC-MS methods; a reverse phase method on a C18 column in ESI+ and ESI-

, and a HILIC method in ESI-. Total ion chromatograms for the three LC-MS 

methods are shown in Figure 4.3.1. The C18 ESI+ method (Figure 4.3.1A) provided 

good separation of multiple peaks across the entire run. ACN-extracted samples 

(black, blue, and bright green) showed some peak broadening between 2 and 3 

mins, and again segregated from the other techniques at 8.5-10.5mins. There was 

minimal variation between lysis methods for all three solvents. The C18 ESI- method 

(Figure 4.3.1B) had a remarkably high baseline and very little differentiation 

between extraction or lysis methods. There were very few distinguishable peaks, 

which may indicate a low number of detectable compounds. The HILIC method 

(Figure 4.3.1C) again showed good separation peaks throughout. The large peaks 

early in the method point to a high number of compounds eluting in the void volume. 

As with C18 ESI+ there was very little to distinguish the different extraction and lysis 

protocols. Vortexed ACN (bright green) and MeOH (cyan) did show some 

incongruity throughout the run. Ultimately extracted ion chromatograms will be 

needed to assess the effectiveness of the different sample preparation protocols. 

Examples of extracted features for solvent and lysis protocols measured by the 

three LC-MS methods are shown in Figures 4.3.1D-F. 



 

Figure 4.3.1: Total Ion Chromatograms (TICs) for Sample Preparation Optimisation 

Experiment. TICs of 1x106 primary monocytes isolated from healthy blood and metabolites 

extracted with either acetonitrile (ACN), methanol (MeOH), or ACN:MeOH:H2O (AMW, 

2:2:1) and lysed by either sonication (SON), freeze-thaw (FT), or vortexing (VTX). Samples 

were analysed by LC-MS with reverse-phase C18 in ESI+ (A), ESI- (B), and HILIC ESI- (C). 

Example metabolite levels for solvent and lysis protocols measured by C18 in ESI+ (D), 

ESI- (E), and HILIC ESI- (F) are plotted as mean ± standard error of the mean (SEM). 



Next, looking at the different extraction methods in an unbiased approach 

untargeted analysis of extracted monocytes was carried out as described in 

Sections 2.9.7 and 2.9.8. There were 146, 96 and 205 unique features detectable 

in all samples from the C18 ESI+, C18 ESI-, and HILIC ESI- respectively (Figure 

4.3.2A). The low number of detectable features in C18 ESI- was predictable given 

the high baseline and lack of distinguishable peaks in the TIC (Figure 4.3.1B). The 

combined detectable features were used to generate PCA plots comparing 

extraction solvents and lysis methods (colour-coded in Figures 4.3.2B & 4.3.2C). 

Methanol- and ACN:MeOH:H2O-extracted samples clustered closely together, and 

ACN-extracted samples were separate from these and one another (Figure 4.3.2B). 

This separation is likely coming from variance in metabolites detected in the C18 

ESI+ method as predicted from the TIC. In contrast, lysis methods did not readily 

cluster together or apart from one another and were not particularly distinct (Figure 

4.3.2C).  

 

Next, the combined features (n=447) from the three LC-MS methods were used to 

determine the combined peak area, and the variation in peak areas across 

replicates was measured by percent coefficient of variation (%CV). A number of 

methods showed consistently high total peak area with limited variation between 

replicates. In particular, the freeze-thaw lysis method returned consistently high total 

peak area (Figure 4.3.3A) and had the lowest %CV between replicates (Figure 

4.3.3B). Methanol extractions with all three lysis methods also performed well. There 

was substantial variation in total peak area with ACN extractions, which indicates 

that ACN may not be an appropriate extraction solvent for larger cohorts. The 

ACN:MeOH:H2O blend did however show impressive peak areas and %CV, 

particularly with freeze-thaw and vortexing lysis protocols. 
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Figure 4.3.2: Principal Component Analyses of Solvent and Lysis Strategies for 

Primary Monocyte Metabolite Extraction. 1x106 primary monocytes were isolated from 

healthy blood and metabolites extracted with monocytes extracted with either acetonitrile 

(ACN), methanol (MeOH), or ACN:MeOH:Water (AMW, 2:2:1) and lysed by either 

sonication (SON), freeze-thaw (FT), or vortexing (VTX). Samples were analysed by LC-MS 

with reverse-phase C18 in ESI+, C18 ESI-, and HILIC ESI- and untargeted analysis carried 

out using MassHunter ProFinder. There were 146, 96 and 205 features from the C18 ESI+, 

C18 ESI-, and HILIC ESI- respectively (A). Features identified in all variable groups from 

the three LC-MS methods (n=447) were combined and principal component analysis (PCA) 

was carried out to investigate clustering by solvent (B) and lysis method (C).  



 

Figure 4.3.3: Peak Areas and %CVs Comparison of Solvent and Lysis Strategies for 

Primary Monocyte Metabolite Extraction. Primary monocytes (1x106) were isolated from 

healthy blood and metabolites extracted with monocytes extracted with either acetonitrile 

(ACN), methanol (MeOH), or ACN:MeOH:Water (AMW, 2:2:1) and lysed by either 

sonication (SON), freeze-thaw (FT), or vortexing (VTX). Samples were analysed by LC-MS 

with reverse-phase C18 in ESI+, C18 ESI-, and HILIC ESI- and untargeted analysis carried 

out using MassHunter ProFinder. The sum of peak areas (A) and %CVs (B) for the 447 

features detected across all sample preparation protocols are compared for the different 

methods. Peak areas (A) are plotted as mean ± standard error of the mean (SEM) and 

%CVs are plotted as maximum and minimum with the mean highlighted with a “+”. 



   
 

145 
 

Correlation analysis of the combined feature peak areas (n=447) was carried out to 

compare consistency across extraction protocols (Figures 4.3.4 and 4.3.5). All 

extractions correlated well with one another, and the lowest Pearson r value was 

0.876 (MeOH-FT vs ACN-SON). The ACN-SON extraction had the lowest 

correlation coefficients of all the extraction methods and ACN extractions also had 

lower r values than the other extractions. ACN does not appear to be as effective 

as MeOH or the ACN:MeOH:H2O blend, but there is little to separate the latter two 

in terms of extraction efficacy. The blend slightly outperformed MeOH slightly in 

terms of Pearson r and other readouts. 

 

Untargeted analysis was carried out on individual extraction-lysis protocols to 

measure the total numbers of metabolite features detectable for each technique. 

These are plotted in Figure 4.3.6 separated by LC-MS method. As with previous 

analysis there was very little to discriminate between lysis protocols, and the 

majority of variation came from different extraction solvents. Methanol-based 

extractions detected the most metabolite features, particularly with the C18 ESI+ 

and HILIC methods. ACN extractions detected a greater number of metabolites 

when measured by C18 ESI-, but this method detected the fewest features of the 

three LC-MS methods overall. 
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Figure 4.3.4: Correlations of Peak Areas with Solvent and Lysis Strategies for Primary 

Monocyte Metabolite Extraction. Primary monocytes (1x106) were isolated from healthy 

blood and metabolites extracted with monocytes extracted with either acetonitrile (ACN), 

methanol (MeOH), or ACN:MeOH:Water (AMW, 2:2:1) and lysed by either sonication 

(SON), freeze-thaw (FT), or vortexing (VTX). Samples were analysed by LC-MS with 

reverse-phase C18 in ESI+, C18 ESI-, and HILIC ESI- and untargeted analysis carried out 

using MassHunter ProFinder. Correlations of peak areas within solvents are shown in 

Figures A-I.  
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Figure 4.3.5: Correlation Matrix of Peak Areas with Solvent and Lysis Strategies for 

Primary Monocyte Metabolite Extraction. Primary monocytes (1x106) were isolated from 

healthy blood and metabolites extracted with monocytes extracted with either acetonitrile 

(ACN), methanol (MeOH), or ACN:MeOH:Water (AMW, 2:2:1) and lysed by either 

sonication (SON), freeze-thaw (FT), or vortexing (VTX). Samples were analysed by LC-MS 

with reverse-phase C18 in ESI+, C18 ESI-, and HILIC ESI- and untargeted analysis carried 

out using MassHunter ProFinder. The Pearson correlation matrix for all solvent and lysis 

methods is shown highlighting strong (blue) and weaker correlations (white-red) in paired 

samples. 
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Figure 4.3.6: Unique Features Detected Across Solvent and Lysis Strategies for 

Primary Monocyte Metabolite Extraction. Primary monocytes (1x106) were isolated from 

healthy blood and metabolites extracted with monocytes extracted with either acetonitrile 

(ACN), methanol (MeOH), or ACN:MeOH:Water (AMW, 2:2:1) and lysed by either 

sonication (SON), freeze-thaw (FT), or vortexing (VTX). Samples were analysed by LC-MS 

with reverse-phase C18 in ESI+ (A), C18 ESI- (B), and HILIC ESI- (C) and untargeted 

analysis carried out using MassHunter ProFinder. Numbers of metabolite features detected 

by different LC-MS methods for nine solvent/lysis strategies are shown.  
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These results do not point to a clear, superior extraction strategy, and the literature 

is conflicting in recommendations for single phase extractions. The final choices for 

the optimised sample preparation protocol are as follows:  

• Solvent: Some experts recommend a mixture of solvents with different 

polarities (e.g. ACN:MeOH:H2O) for extensive metabolome coverage [47]. 

The most common extraction protocol for mammalian cell metabolomics is 

80% MeOH in water [58]. The high performance of the ACN:MeOH:H2O may 

come from the addition of water [358]. Based on these results (high numbers 

of features detected, low %CV) and recommendations from literature review, 

we opted to use 80% MeOH as our extraction solvent for metabolomic 

profiling. 

• Lysis. Overall, there was very little variation between lysis protocols. Freeze-

thaw (FT) protocols had lower inter-replicate variation regardless of 

extraction solvent. However vigorous lysis protocols such as these are 

typically only required for cell types with rigid membranes such as yeasts and 

bacteria. We opted to combine the sonication and vortexing protocols and 

the full optimised sample preparation protocol is detailed in Section 2.9.2.  

• RP and HILIC chromatography are traditionally used together used as 

complimentary techniques to improve metabolome coverage. However, due 

to the lower numbers of features detected with the C18 method plus the 

requirement for an ion-pairing agent (PFPA) in the mobile phase, this method 

was not considered appropriate for metabolomic profiling. The HILIC method 

(run in ESI+ & ESI-) will be the primary LC-MS method for metabolomic 

profiling experiments. Full details of this method can be found in Section 

2.9.3.  
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4.3.2 Validation of Sample Preparation Optimisation in Peripheral 
Blood Mononuclear Cells (PBMCs) and Monocytes 

To validate the sample preparation optimisation results, we stimulated PBMCs and 

monocytes with ANCA and trialled the optimised extracted protocol (see Section 

4.2.3.3). As shown in the PCA plot for the  targeted metabolites in Figure 4.3.7 

(20/53 and 19/53 detectable in PBMCs and monocytes respectively, cells were 

differentiated more on the basis of cell type (PBMC vs. monocyte) than treatment 

(unstimulated, isotype, anti-MPO or anti-PR3). This is to be expected as PBMCs 

represent a diverse cell population with various metabolic demands, many of which 

do not respond to ANCA stimulation. From these data, neither cell type could 

discriminate treatment groups based on metabolism. Due to poor metabolite 

recovery in monocytes for Donor 2 and PBMCs in Donor 3, these replicates were 

excluded from the analysis. There were only minor differences in metabolite levels 

between anti-MPO, anti-PR3, and unstimulated cells (Figure 4.3.8). Some 

metabolites which were not detectable in PBMCs were enriched in monocytes – 

notably aconitic acid and citrate – which are involved in the TCA cycle. A number of 

amino acids detectable in PBMCs were not found in monocytes (see Figure 4.3.8). 

Curiously, concentrations of inosine 5-monophosphate (IMP) showed a slight 

decrease in PBMCs in response to ANCA, but this compound was not detectable in 

isolated monocytes (Figure 4.3.8B). This metabolite may be involved in the ANCA 

response in other cell types in the PBMC fraction. However, this small experiment 

is dramatically underpowered to give meaningful results about ANCA stimulation, 

and these findings should be considered with caution. We can however confirm that 

the optimised sample preparation protocol is effective at detective metabolites of 

interest contained in the synthetic standard mix in primary immune cells. 

 



 

Figure 4.3.7: Principal Component Analyses of Targeted Analysis of Primary Monocytes and PBMCs for Sample Preparation Validation. 

PBMCs (squares) and CD14+ monocytes (circles) were isolated from blood of healthy controls (n=3) and stimulated for 4 hours with 5μg/ml monoclonal 

antibody (mAb) directed against MPO (blue), PR3 (green), or IgG1 isotype control (light grey). Metabolites were extracted and analysed using optimised 

sample preparation and LC-MS protocols and targeted metabolite analysis carried out using MassHunter ProFinder. Principal Component Analysis 

(PCA) plots were generated for the four treatment groups. 
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Figure 4.3.8: Radar Plot Analyses of Targeted Analysis of Primary Monocytes and PBMCs for Sample Preparation Validation. PBMCs (A) and 

CD14+ monocytes (B) were isolated from blood of healthy controls and stimulated for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against 

MPO, PR3, or IgG1 isotype control (n=3). Metabolites were extracted and analysed using optimised sample preparation and LC-MS protocols and 

targeted metabolite analysis carried out using MassHunter ProFinder. Radar plots of log2-transformed metabolite data of PBMCs (A) and CD14+ 

monocytes (B) are shown. 

  



The number of detectable metabolite features was assessed and compared to 

previous experiments (Figure 4.3.9). This sample preparation validation experiment 

used 5x106 cells per stimulation condition, a fivefold increase on cell numbers from 

the sample preparation optimisation work. As a result, the number of detectable 

features would be expected to increase compared to MeOH and AMW extractions. 

However, there were fewer metabolite features detected in the sample preparation 

validation than the sample preparation optimisation (Figure 4.3.9). There were 901, 

952, and 904 features detected on average in the ACN, MeOH and blended AMW 

monocyte extractions, respectively. Validation experiments detected just 528 

features in monocytes after stimulation, with 874 and 739 in the PBMC and 

PooledQC groups respectively. These differences are likely a result of insufficient 

quenching, as the Validation experiments were not cooled after stimulation. 

Additional sample handling in the post-stimulation cells compared to the freshly 

isolated, unstimulated monocytes from the optimisation work, may also have 

affected peak area accuracy. The disparity could also be a result of variation 

between treatment groups or confounded by higher number of (mismatched) 

samples. Additional considerations for the optimised protocol will focus on improving 

removal of cells from plates, sample dry down to concentrate samples, and 

monitoring consistency in extraction efficacy between replicates. 

 

Finally, the HILIC method was shown to have excellent coverage of metabolites in 

the synthetic standard mixture. 52 of the 53 metabolites in the synthetic standard 

preparation were detectable across the positive and negative ionisation modes (see 

Figure 5.3.8). Urea was the only metabolite not detectable by either ionisation mode. 

The method was also able to detect 739 features in the PooledQC samples of the 

sample preparation validation experiment. Additional optimisation of experimental 

conditions and metabolomic data analysis is needed to precisely determine the role 

of ANCA stimulation in primary monocytes at this early timepoint. 
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Figure 4.3.9: Numbers of Detectable Metabolite Features by HILIC ESI- LC-MS across 

Sample Preparation Optimisation and Validation Experiments. ACN, MeOH, and AWH 

represent the numbers of features detectable in the acetonitrile, methanol and 

ACN:MeOH:Water blend in the sample preparation optimisation experiments, respectively. 

These experiments were carried out in freshly isolated primary monocytes. Features 

detected in the Sample Preparation Optimisation PBMCs and Monocytes are plotted 

(extracted in 80% MeOH), as well as the PooledQC containing both cell types.  
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4.3.3 Log Transformation is an Essential Step for Metabolomic 
Data Normalisation 

Metabolomics data covers several orders of magnitude, and primary cell culture 

introduces a high degree of inter-replicate variability. Log transformation (to base 10 

or base 2) is a routine data analysis procedure which limits the influence of extreme 

values for subsequent statistical analysis. Normality and lognormality of 

metabolomic data from the targeted analysis of the Primary monocyte profiling 

cohort (see Figure 5.2.1) was assessed using four methods: Anderson-Darling, 

D'Agostino & Pearson, Shapiro-Wilk, and Kolmogorov-Smirnov tests. QQ plots for 

normal (non-transformed AUC values) and lognormal values are shown in Figure 

4.3.10. Actual values do not remotely correlate with the predicted values on the 

normal QQ plot (Figure 4.3.10A), indicating a high degree of skewness. Conversely, 

the majority of the lognormal samples align closely with predicted values (Figure 

4.3.10B). There is a small amount of kurtosis in some samples, which may represent 

outliers or may be amenable to data normalisation. From these results, we can 

conclude that log2 transformation is an essential step for metabolomic data 

normalisation. All metabolomic data reported in this work has been log2 transformed.  



 

Figure 4.3.10: Normality Testing Metabolomics Data of Stimulated Primary Monocytes. CD14+ monocytes were isolated from healthy donors and 

stimulated (or left unstimulated, grey) @37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO (blue), PR3 (green), or 200ng/ml 

LPS (red). Metabolites were extracted, analysed by LC-MS, and targeted metabolomic analysis of 53 metabolites was completed. 32 of the 53 

metabolites were detected in experimental samples. Normality testing was completed using four methods: Anderson-Darling test, D'agostino & Pearson 

test, Shapiro-Wilk test, and Kolmogorov-Smirnov test. QQ plots for Normal (A) and Lognormal (B) data were generated.



4.3.4 Assessment of Normalisation Strategies for Untargeted 
Metabolomic Analysis of Primary Monocytes 

Given the high degree of variability in cellular metabolomics studies, data 

normalization is an essential step. Here a total of 41 normalisation methods were 

applied to the primary monocyte metabolomic profiling data. A summary of the 

normalisation methods trialled in this work is shown in Figure 4.2.2. The 

effectiveness of the various normalisation strategies is compared to log2 

transformed data alone. These methods were assessed for efficacy using the 

following criteria: 

• Intragroup variance measured by coefficients of variation (%CV) and median 

absolute deviation (MAD); and 

• Intergroup differentiation with principal component analyses (PCA) and 

receiver operating characteristic (ROC) curves; 

These analyses were carried out in PooledQC samples where possible, and also in 

the negative (unstimulated cells, NS) and positive (LPS) control groups.  

 

Before carrying out these assessments, Pearson correlation analysis was 

completed to evaluate the similarity of these normalisation methods with one 

another. Comparing the levels of 32 metabolites in unstimulated cells (n=6, see 

Figure 5.3.2) we show that several methods correlated very strongly with one 

another (Figure 4.3.11), indicating an overlap in their methodologies. In particular, 

biological normalisation methods – which applied additional experimental results 

(cytokine production, protein content) to samples as an external scalar – showed 

very high correlations in these unstimulated cells. Certain algorithms (scaling, 

baselining) were similar in their application. Interestingly, both MPP and the 

NOREVA [102] platforms offer Pareto Scaling [359], probabilistic quotient 

normalization (PQN [360]), and quantile [361] normalisation. These methods had r 

values of 0.86, 0.43, and 0.62 with their relevant counterparts, respectively, 

indicating differences in application, despite being identical in name. Two protein 

measurement approaches (A280, BCA) were also considered, and both showed 

perfect correlation with log2 alone and with one another. An exception to the 

similarities is the Contrast method, which showed a (minor) negative correlation with 

almost all methods. This highlights the need for an intimate understanding of input 

data before application of different normalisation methods.  
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Figure 4.3.11: Correlation Matrix of Normalisation Methods Applied to Unstimulated 

Cells. CD14+ monocytes (n=6) were isolated from healthy donors and stimulated @37°C 

for 4 hours with unstimulated cells as a negative control. Metabolites were extracted, 

analysed by LC-MS, and targeted metabolomic analysis of 53 metabolites was completed. 

32 of these 53 metabolites were detected and metabolite abundances calculated. 

Abundance values for unstimulated cells were normalised by 41 different normalisation 

techniques. Pearson r values for these normalised areas were calculated for each method 

and plotted here as a correlation matrix.  
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4.3.5 Intragroup Variation Assessment by Normalisation 
Strategies in PooledQC Samples and Unstimulated Cells 

Next, we assessed intragroup variance in the PooledQC (PQC) and negative control 

(NS) groups. There were 10 PQC measurements throughout the run including a 

triplicate block at the beginning and end. The NOREVA methods use PQC samples 

for additional inter-run normalisation by LOESS as standard [102]. Therefore, PQC 

results for these normalisation strategies are not available and were excluded from 

this analysis. %CVs for 32 metabolites detectable in PQC samples were calculated 

for 18 of the 41 normalisation methods and plotted in Figure 4.3.12A. Although %CV 

is routinely used in LC-MS it is sensitive to negative and zero values, which many 

of the normalisation methods generate. Median absolute deviation (MAD) was 

calculated to overcome this shortfall and results are plotted in Figure 4.3.12B.  

 

Log2 transformation alone reduced the median %CV from 10.29 to 0.92 (Figure 

4.3.12A) in PQC samples. The protein content measurements (A280 and BCA OD 

MF) and MPP PQN and Quantile algorithms further improved upon the log2 %CV 

value. %CV for Total Abundance normalised data is not shown on the plot as it is 

below zero, and normalised values for the baselining methods were highly 

exaggerated. Conversely, these methods performed better when assessed by MAD. 

The MAD values for non-normalised samples are exceptionally high, further 

emphasising the need for log2 transformation in cellular metabolomic data analysis. 

Baselining methods had improved/decreased MAD compared to log2 transformation 

alone. Protein content and cytokine production readouts did not alter MAD values. 

These two readouts show that different normalisation strategies can improve 

intragroup variation in PQC samples. 
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Figure 4.3.12: Intergroup Variation in PooledQC Samples by Normalisation Method. 

CD14+ monocytes (n=6) were isolated from healthy donors and stimulated @37°C for 4 

hours with unstimulated cells as a negative control. Metabolites were extracted, analysed 

by LC-MS, and targeted metabolomic analysis of 53 metabolites was completed. 32 of these 

53 metabolites were detected in experimental samples and metabolite abundances 

calculated. Abundance values for PooledQC samples (n=10) were normalised using 18/41 

normalisation techniques that do not utilise PooledQC samples in their methodology. 

Coefficients of Variation (%CV, A) and median absolute deviation (MAD, B) were calculated 

for each metabolite with each normalisation method. 
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Similar results to PQC samples were also evident in unstimulated cells (Figure 

4.3.13). %CV and MAD were calculated for all 41 normalisation methods in 

unstimulated monocytes. It is clear from these graphs that %CV and MAD work 

differently for different normalisation techniques – external scalars are more 

effective as measured by %CV and algorithms perform better when assessed by 

MAD. Several normalisation methods had %CVs well above 100% for all 32 

metabolites and some results could not be plotted as the %CV values were negative 

(TIC, BPC, Total Sum, Sum M32), further emphasising the need for diverse 

intragroup variation measurements. Similar to PQCs, MAD was excessive for non-

normalised data in unstimulated cells. MAD values for the cluster of methods in 

Figure 4.3.11 were almost unchanged, but show massive improvements in %CV. 

Many NOREVA normalisation algorithms showed improvements in MAD compared 

to log2 transformation alone. Here we have identified a number of normalisation 

techniques which can improve intragroup variation in primary monocytes. Before we 

can rule out certain methods, additional effectiveness strategies will be required to 

determined which of these are the most appropriate for our dataset. 
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Figure 4.3.13: Intragroup Variation in Unstimulated Cells by Normalisation Method. 

CD14+ monocytes (n=6) were isolated from healthy donors and stimulated @37°C for 4 

hours with unstimulated cells as a negative control. Metabolites were extracted, analysed 

by LC-MS, and targeted metabolomic analysis of 53 metabolites was completed. 32 of these 

53 metabolites were detected in experimental samples and metabolite abundances 

calculated. Abundance values for unstimulated cells (n=6) were normalised by 41 different 

normalisation techniques. Coefficients of Variation (%CV, A) and median absolute deviation 

(MAD, B) were calculated for each metabolite with each normalisation method. 
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4.3.6 Intergroup Separation Assessment by Normalisation 
Strategies  

In total, 25 of the 41 normalisation methods had lower %CV and/or MAD compared 

to log2 transformation alone. A280 metabolite fraction (MF), BCA OD MF, BCA OD 

Pellet, PQN ALL (MPP) and Quantile (MPP) all lower %CV. MAD improved for 

Baseline to Mean All, Baseline to Median All, Pareto (MPP), Z Transform, MSTUS, 

PQN (NOREVA), Quantile (NOREVA), EigenMS, Cyclic LOESS, Auto Scaling, Log 

Transform, Mean, Median, Pareto Scaling, Power Scaling, Range Scaling, Total 

Sum, Level Scaling, Vast Scaling, and Linear Baseline. To further interrogate the 

utility of these normalisation methods, PCA plots for each method were generated 

to assess separation of the positive (LPS) and negative (unstimulated, NS) controls. 

These plots were compared to log2 transformation alone. Improved separation of 

these two groups would indicate effective data normalisation [73]. Normalisation 

methods which matched log2 %CV (3.66) or MAD (1.92) were not plotted. 

 

The five normalisation methods which showed improvement in intragroup variation 

in unstimulated cells measured by %CV are displayed in Figure 4.3.14. 

Normalisation by cell pellet protein (D) was the only method with improved PCA 

appearance compared to log2 alone (A). Other protein content measurements (A280 

[B] or BCA OD MF [C]) showed lesser improvements in intergroup separation, and 

MPP algorithms (PQN [E] and Quantile[F]) were almost unchanged. Cytokine 

production as a normalisation method (IL-1β, IL-6 or TNF-α; Figures 4.3.14G, H, & 

I, respectively) showed a very favourable PCA appearance. However, these results 

are normalised to an external scalar with (substantial) significant differences 

between treatment groups. Not only does this scalar become the primary driver of 

intergroup separation when there are significant differences between groups, this 

technique can also conceal metabolic links to cytokine production. Thus, these 

normalisation methods were not considered for further analyses.



 

Figure 4.3.14: Principal Component Analysis Comparison of Normalisation Methods 

with Improved %CV Relative to Log2 Transformation. CD14+ monocytes (n=6) were 

isolated from healthy donors and stimulated @37°C for 4 hours with 200ng/ml LPS (and 

ANCA) or left unstimulated. Metabolites were extracted, analysed by LC-MS, and targeted 

metabolomic analysis of 53 metabolites was completed. 32 of these 53 metabolites were 

detected in experimental samples and metabolite abundances calculated. Abundance 

values for unstimulated cells were normalised using different methods which improved %CV 

relative to log2 alone principal component analysis (PCA) plots were created to compare 

unstimulated (NS, gold) and LPS (red). Log2 transformation alone (A) was compared to 

normalisation by protein levels measured by A280 of the metabolite fraction (B), BCA of the 

metabolite fraction (C), BCA of the cell pellet (D), or by probable quotient normalisation 

(PQN, E) or quantile (F) algorithms. Normalisation to cytokine production (IL-1β [G], IL-6 

[H], TNF-α [I]) was also assessed.



PCA plots for all twenty methods which had lower MAD than log2 transformation 

alone are shown in Figure 4.3.15. The four baselining algorithms (Baseline to Mean 

All, Baseline to Median All, Pareto [MPP], and Z Transform) had identical PCA plots 

(B) which were unchanged from log2 alone (A). Several of the NOREVA scaling 

methods also had very similar PCA plots with limited improvement. Only MSTUS 

(C), cyclic LOESS (G), mean (J), and (K) median showed improved separation of 

treatment groups. PQN (D) and linear baseline (R) did show improved clustering of 

LPS-treated cells, but not of unstimulated cells. Total sum (O) had a unique PCA 

appearance, but little improvement in separation.  

 

Several normalisation techniques which improve data normalisation in primary 

monocytes have been explored here, and those perfomring well in multiple 

categories are listed in Table 4.3.1. Given the positive performance in limiting 

intragroup variation and improving intergroup separation, metabolite fraction protein 

content (BCA MF OD) was chosen as the superior normalisation strategy. This will 

be investigated in additional detail for utility in cellular metabolomic data 

normalisation. 

Normalisation 
Method 

Category 

NOREVA Readouts 

PCA 
Correlation 
by Sample 

Mean 
%CV 

Mean 
MAD Sum 

A2 

Sum 
PMAD & 

PEV 

Rank 
D 

Log2 Only N/A 99.11 1.31 0.53 Fair Good 3.66 1.93 

Constant Sum 
1000 

MPP 
Algorithms 

N/A N/A N/A Fair Good 6.28 1.93 

Total Abundance 
MPP 

Algorithms 
N/A N/A N/A Fair Good -7.36 1.93 

BCA OD MF Biological N/A N/A N/A Fair Good 2.77 1.93 

MSTUS 
NOREVA 
Algorithms 

62.53 0.02 0.28 Fair Fair 31.07 0.00 

PQN 
NOREVA 
Algorithms 

848.2 0.64 0.94 Fair Fair -142.88 0.11 

EigenMS 
NOREVA 
Algorithms 

556.4 0.62 0.06 Fair Good -135.16 0.19 

Cyclic LOESS 
NOREVA 
Algorithms 

52.95 0.51 0.14 Fair Fair 27.06 0.14 

Table 4.3.1: Summary of Top Performing Normalisation Techniques. Forty-one 

normalisation methods were compared for their effectiveness at normalising targeted 

metabolomic data in unstimulated monocytes. Results are colour-coded as improvements 

(green fill ) or worsening (red fill) compared to log2 transformation alone. Negative values 

(red text) were not considered. NOREVA readouts are elaborated in reference [102]. PCA: 

principal component analysis;  MAD: median absolute deviation.



 

Figure 4.3.15: Principal Component Analysis Comparison of Normalisation Methods with Improved MAD Relative to Log2 Transformation. 

CD14+ monocytes (n=6) were isolated from healthy donors and stimulated @37°C for 4 hours with 200ng/ml LPS (and ANCA) or left unstimulated. 

Metabolites were extracted, analysed by LC-MS, and targeted metabolomic analysis of 53 metabolites was completed. 32 of these 53 metabolites were 

detected in experimental samples and metabolite abundances calculated. Abundance values for unstimulated cells were normalised using different 

methods which improved MAD relative to log2 alone principal component analysis (PCA) plots were created to compare unstimulated (NS, gold) and 

LPS (red). Log2 transformation alone (A) was compared to normalisation by the four baselining protocols (B), MSTUS (C), PQN (D), Quantile (E) , 

EigenMS (F), Cyclic LOESS (G), Auto Scaling (H), Log Transform (I), Mean (J), Median (K), Pareto Scaling (L), Power Scaling (M), Range Scaling (N), 

Total Sum (O), Level Scaling (P), Vast Scaling (Q), and Linear Baseline (R). 



4.3.7 Improving Compatibility of Methanol Extraction Solvent for 
Protein Measurement with the Pierce™ BCA Assay 

BCA was the optimal method for measuring protein content in monocyte extracts 

and for normalisation of metabolomic data in this cohort. In order to further improve 

the efficiency of this assay a number of optimisation experiments were performed. 

First the compatibility of MeOH with the assay was assessed (Figure 4.3.16A). 

Despite only being listed as compatible below 10%, we found that 80% MeOH 

performed comparably to PBS, particularly in a plate-based assay. PBS correlated 

very well will MeOH in both plate- and tube-based assays (R2 = 0.9823, p<0.0001). 

Methanol was even better at detecting low protein concentrations, which is 

promising for measurement of metabolite extracts where the majority of proteins 

have been precipitated during sample preparation. Blank samples with a higher 

percentage of MeOH also had lower OD values (Figure 4.3.16B), limiting 

background interference. Finally, different sample volumes were tested across a 

standard curve. Sample volumes as low as 10µl maintained consistency in protein 

measurements with this plate-based assay (Figure 4.3.16C). Lower protein contents 

were better detected with longer incubation times, even up to 18 hours. Overall, the 

PierceTM BCA protein assay was compatible with 80% MeOH and suitable for 

measurement of residual protein content measurements in metabolomic 

extractions. The optimised BCA assay protocol for protein concentration 

measurements of extracted metabolite fractions is described in Section 2.5. 
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Figure 4.3.16: Optimisation of BCA Assay with Methanol Extraction Solvent. The 

PierceTM BCA assay protocol was modified to assess compatibility with 80% MeOH 

extraction solvent. Plate and tube protocols were compared with various concentrations of 

BSA standards prepared with PBS or MeOH (A). Background error from blank sample 

interference (B), and different  sample loading volume protocols were also trialled (C).  
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4.3.8 Residual Protein in the Metabolite Fraction Shows the 
Strongest Correlation with Cell Number 

Biomass normalisation is commonly used for cellular metabolomic normalisation. 

We compared three different readouts – metabolite fraction protein content (BCA 

assay, Section 2.5), cell pellet protein content (BCA assay), and cell pellet DNA 

content (DNA assay, Section 2.10) – for their utility in determining cell number to 

correct for technical experimental variation (Figure 4.3.17). All three methods 

showed a significant correlation with cell number. This association was weakest for 

the DNA assay, which also had inconsistent readouts. Measuring protein content by 

BCA assay correlated strongly with cell number for both the metabolite fraction and 

the cell pellet. These two protein content measurements also strongly correlated 

with one another (R2= 0.9266, p<0.0001, data not shown). However, protein levels 

were significantly different between treatment groups in the cell pellet, but not the 

metabolite fraction (Figure 4.3.17B & 4.3.17C). This indicates that the metabolite 

fraction would be the preferable option, as technical differences in metabolite levels 

between groups will not be statistically impacted by the normalisation. Measurement 

of protein content in the cell pellet was also challenging as it was not entirely soluble 

in the DNA assay buffer. Compatibility of the DNA assay buffer with the BCA assay 

was also confirmed in a similar manner to experiments shown in Figure 4.3.16 (data 

not shown). 

 

Based on the consistent high performance across normalisation assessment 

criteria, ease and accuracy of measurement, and ability to detect significant 

metabolite changes between groups without influencing biomarker discovery, 

residual protein content in the metabolite fraction was determined to be the optimum 

metabolomic data normalisation technique. 
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Figure 4.3.17: Comparison of Biomass Normalisation Methods for Metabolomic Data 

Normalisation. PBMCs were isolated from blood of healthy controls (n=5), quantified and 

fractioned, and metabolites extracted in 80% MeOH. Protein levels in the metabolite and 

pellet fractions were quantified by BCA assay, and DNA levels in the cell pellet were also 

measured. Results for each cell fraction were plotted and correlation (Pearson) with cell 

number was determined (A). Protein levels in the metabolite (B) and pellet (C) fractions 

were measured in ANCA- and LPS-stimulated monocytes in the Primary monocyte 

metabolomics cohort. Differences between groups were assessed by ANOVA and 

compared to unstimulated cells. 
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4.4 Discussion 

4.4.1 LC-MS Sample Preparation 
There are many factors to consider when optimising an untargeted metabolomic 

experiment. These sample preparation and LC-MS method optimisation 

experiments focused on extraction solvents, cell lysis, and column/gradient 

optimisation. For this work, we have combined direct ice-cold extraction buffer with 

quenching on dry ice to arrest metabolite turnover in primary human monocytes. 

Extraction solvent choice directly affects metabolome coverage. In our 

investigations with primary human monocytes, 100% MeOH and a blend of ACN, 

MeOH, and water (ACN:MeOH:H2O, 2:2:1) both performed well in terms of 

detectable metabolites and consistency between replicates. Methanol-based 

extractions have been shown to be effective extraction solvents for adherent cells 

[362]. The ACN:MeOH:H2O extraction was used by Rahman et al. [94] on a variety 

of cell lines (and tissues) across a range of LC-MS methods, where it showed 

excellent coverage of a range of metabolic pathways. Indeed, a mixture of solvents 

with opposing polarities is recommended for broad metabolome coverage [47]. As 

such, adding water to the extraction solvent may increase the number of detectable 

features and improve metabolome coverage and biomarker discovery [358]. The 

favourable performance of the ACN:MeOH:H2O blend may be due to its water 

content, and the same ratio of water with methanol alone (80% MeOH) is commonly 

used in cellular metabolomics investigations [58]. As such this was used as the 

extraction solvent for subsequent metabolomics experiments. Dual-phase 

extractions were not explored in these optimisation works, but may be useful for 

additional multi-omics experiments to validate our findings. Technical variation can 

be minimised by completing metabolite extractions on the same day with the same 

solvent batch. This should be incorporated to the standardised protocol for 

mammalian cell metabolomics. 

 

Cell lysis is necessary to release intracellular contents for metabolite extraction. 

Similar to the investigation of adherent SW480 cells by Dettmer et al. [362], we did 

not see a huge influence of different cell lysis techniques on metabolite recovery. 

The freeze-thaw protocol had the lowest %CVs for metabolite features (Figure 

4.3.3) but was the most time-intensive of the three lysis methods trialled. Intensive 

lysis protocols such as direct probe sonication and bead beating are only necessary 
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for cell types with rigid membranes such as yeast and gram-negative bacteria. As 

such a combined ice-bath sonication and vortexing extraction was used in 

subsequent extractions.  

This optimised sample preparation method was validated in PBMCs and 

monocytes. Despite a higher cell number used in these experiments, there were a 

similar number of metabolic features detected in this and the sample preparation 

optimisation work (Figure 4.3.9). Given the number of experimental variables in 

cellular metabolomics we believe that the additional sample handling involved in the 

validation work may have impacted metabolite detection [47, 73-75, 88]. 

Additionally, these cells were only quenched on wet ice, which may not have 

effectively preserved metabolite integrity, meaning low abundance metabolites were 

not detected Quenching with ice-cold extraction solvent can be sufficient for cellular 

metabolomics [50], but additional quenching on dry ice is recommended to fully 

preserve the cells’ phenotype. Through extensive literature review and a number of 

pilot experiments, additional steps were incorporated into (or omitted from) the final 

sample preparation protocol. Washing to ensure complete removal of cells from 

plates and effectively separate cells from supernatant media is one such process. 

Although suspension cells are less susceptible to metabolite leakage from scraping 

than their adherent counterparts, the wash step is still important to preserve the 

intracellular metabolome (and separate it from cell supernatant). Chilled 0.9% 

sodium chloride (NaCl) was chosen as the wash buffer for this step as it was less 

likely to contribute to ion suppression than PBS and has been used in similar 

investigations [62, 363]. Thorough wash steps such as those use in various 

biotechnology applications [18] were not applicable to this work, and we adapted 

the method used by Fei et al. [345] for metabolomic analysis of macrophages. 

 

To limit sample handling and preserve cellular metabolism, certain sample 

preparation steps were omitted, notably sample dry down. After sample extraction 

cells can be dried down to further concentrate the sample for reconstitution in a 

more a compatible LC-MS solvent. Cell dry down is typically carried out using a 

lyophiliser, an N2 evaporator, or a SpeedVac. Although a SpeedVac was available, 

we opted not to include a solvent removal step in the sample preparation protocol 

for a number of reasons. Firstly, 80% MeOH is a mildly polar extraction solvent and 

broadly compatible with a number of LC-MS methods. Secondly, the need for 
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concentration of metabolites was limited by use of a second extraction and high 

starting cell number. Repeat extractions can improve metabolite recovery [27, 50, 

345], and we added a second extraction step to our protocol for the Primary and 

Validation experiments described in Chapter 5. Further, these optimisation 

experiments were carried out 1x106 primary monocytes. The availability of a high 

volume of fresh blood from the haemochromatosis clinic meant that we were able 

to use 5x106 cells per condition in our monocyte stimulation experiments, limiting 

the requirement for sample concentration. Although metabolomics can be carried 

out on much smaller cell numbers [352], this ensured that even lower abundance 

metabolites would be above our limits of detection. Thirdly, sample concentration 

using a room temperature SpeedVac can oxidise metabolites during drying [27]. 

This could impact measurement of oxidised species such as ATP, NADP+ and 

GSH. Given the increased OXPHOS in ANCA-stimulated monocytes [238] it is 

important to accurately detect/measure these sensitive metabolites and not 

introduce artefacts as a result of excessive processing. For these reasons, sample 

concentration/drying is not considered essential in this sample preparation protocol. 

 

Finally, all sample preparation extraction solvents were stored at -20°C and all 

samples should be stored on wet ice for the duration of the sample preparation 

protocol. Cooler temperatures maintain quenching and limit metabolite degradation 

[27, 50]. In addition, the same batch of solvents should be used for each 

experimental cohort and extractions should take place on the same day when 

possible to limit variation. The fully optimised sample preparation protocol is shown 

in Figure 4.4.1 and described in Section 2.9.2. 

 

Figure 4.4.1: Summary of Optimised Sample Preparation Protocol of Primary 

Monocytes for Metabolomic Analysis by LC-MS. 
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4.4.2 LC-MS Method Development 
The initial LC-MS methods used for sample preparation optimisation were based on 

those used by Metabolon [28] which combines RP and HILIC chromatography (and 

GC-MS) to measure four metabolite subfractions. We utilised an RP method (“C18”) 

and a HILIC method which were shown to have impressive metabolome coverage 

of our metabolites of interest [42, 357]. Of the three methods trialled, the C18 ESI- 

method had a conspicuously high background in the total ion chromatogram (TIC, 

Figure 4.3.1). TICs represent the sum of all mass spectral peak intensities across 

an LC-MS run without quantitation or individual compound detection. Extracted ion 

chromatograms can then be used to calculate abundances of specific peaks and 

can be used to track intra- or inter-run variability. Whilst a high background can be 

caused by a number of issues such as column/LC contamination, the C18 ESI- 

method also had the lowest number of detectable features across sample methods, 

and higher inter-replicate variability. 

 

A large number of compounds eluting in the void volume as seen with the HILIC 

methods (Figure 4.3.1C) may indicate that these compounds be better detected by 

RP-HPLC-MS. Indeed, RP and HILIC methods should complement each other in 

their metabolite coverage. However, use of this C18 method is complicated by the 

PFPA mobile phase additive. This is an ion pairing agent which requires dedicated 

instrumentation and can induce ion suppression, particularly in positively charged 

compounds. Despite excellent chromatographic quality, we have decided not to 

continue with the C18 method and to use HILIC LC-MS as our primary metabolomic 

profiling technique. Omission of a C18 method may reduce the total numbers of 

detected metabolites and exclude certain non-polar metabolite classes not 

detectable by HILIC alone. Ulmer et al. [59] described an optimized two-step 

protocol for metabolite and lipid extraction from Jurkat T cells. A lipid extraction 

protocol could be applied to cell pellets from our optimisation experiments after the 

initial MeOH extraction to better measure lipid content, should this be necessary. 

Blood and urine lipids have shown to be stable for several years when stored at -

80°C [348], and given the thorough quenching applied to these samples we could 

expect the same from these cells. Certain lipid classes have been reliably detected 

by (HILIC) single phase extraction [345], and the relevance of these compounds to 

monocyte inflammatory responses should be investigated in profiling experiments.  
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HILIC methods can detect a larger number of molecular features than RPLC and at 

higher abundances [54]. With subtle alterations to LC conditions, we can further 

improve the MS response without the need for a complimentary method. Medronic 

acid has been shown to significantly improve the peak shapes and metabolite 

signals for nucleotide, amino acids, and carbohydrates [42]. This novel mobile 

phase additive can also be easily cleared from the LC/MS system and run in both 

positive and negative ESI modes. This LC-MS method was recently used to profile 

the metabolism of activated human T cells with succinate dehydrogenase (SDH) 

inhibition [364]. SDH inhibition impaired proliferation, cytokine production and 

activation marker expression, while synchronously increasing glycolytic 

intermediates. Itaconic acid was also detectable with this method and has been 

shown to be an important metabolite for modulation of inflammatory responses in 

macrophages [365].  

 

Ultimately a modified version of the HILIC-based method was adopted (based on 

work from Hsiao et al. [42]) and used to characterise the metabolic response of 

CD14+ monocytes to LPS and ANCA as described in Chapter 5. Medronic acid was 

omitted from mobile phase B for both ionisation modes (see Section 5.2.3.1). A 

thorough description of LC-MS methods can be found in Section 2.9.3, and are 

summarised in Figure 4.4.2. 

 
Figure 4.4.2: Summary of Optimised LC-MS Method for Metabolomic Profiling of 

Primary Monocytes. The optimised LC-MS method used in this work was adopted from 

Hsiao et al. [42] and is described in detail in Sections 2.9.3 and 5.2.3.1. 
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4.4.3 Metabolomic Data Normalisation 
A key step of the metabolomic data analysis pipeline is data normalisation, which 

must be appropriately optimised for each application. Log transformation is a routine 

data analysis step to curtail the influence of extreme values for subsequent 

statistical analysis [362]. The data from the Primary (and Validation) profiling 

experiments is not normally distributed – it is lognormal. This was confirmed by 

Anderson-Darling, D'Agostino & Pearson, Shapiro-Wilk, and Kolmogorov-Smirnov 

tests (Figure 4.3.10). Additional normalisation strategies were applied to improve 

data quality and assessed for their improvement over log2 transformation alone. The 

NOREVA platform assesses normalisation efficacy as standard using five key 

criteria: reduction in intragroup variation, effect on differential metabolic analysis, 

consistency of identified markers among different datasets, classification accuracy, 

and correspondence to reference data [102, 110]. We adopted and applied these 

criteria to our data from ANCA- and LPS-stimulated monocytes. 

 

Many of the normalisation techniques applied used similar methodologies as 

demonstrated by similarity of unstimulated data in the targeted analysis in Figure 

4.3.11. For instance, many normalisation approaches are centred around using all 

available information to calculate total metabolite abundance and correcting 

individual concentrations around this. Manual calculation with the “Sum M32” 

method – which summed the abundance values of the 32 detectable synthetic 

standard metabolites – produced near identical MAD plots to several other similar 

techniques (Figure 4.3.13B). The MSTUS method (mass spectrometry total useful 

signal) was developed to improve on this by only using signals present in all samples 

(except extraction blanks) to calculate the total appropriate signal to normalise 

around [76]. Indeed, MSTUS was among the lowest MAD values and showed 

improvements in intergroup separation in the PCA plot (Figure 4.3.15C). 

Normalisation to cytokine production (via an external scalar) can potentially obscure 

metabolic links to inflammatory functions. For example, serine was shown to be 

essential for IL-1β production by murine macrophages, and inhibiting its serine 

synthesis limited IL-1β production and release [335]. Thus, despite improvements 

in intergroup separation, normalising to inflammatory readouts is not a viable 

normalisation strategy. 
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Overall, the top performing normalisation technique across all readouts was 

measurement of residual protein content in the metabolite fraction by BCA. This 

technique outperformed measurement of protein content by UV absorbance at 

280nm (“Protein A280”), and once optimised (see Section 4.3.7) became a suitable 

normalisation strategy effective at reducing intragroup variation in both PooledQC 

samples and unstimulated cells. Our 80% MeOH extraction solvent was compatible 

with the standard Pierce™ BCA Protein Assay (23227, Thermo Scientific) and 

improved results may be obtained with more sensitive BCA iterations. The low OD 

values measured in this Secondary cohort were improved by increasing the 

incubation time of the BCA assay. This effect is evidenced in the difference between 

protein levels in the Primary and Validation metabolomic profiling cohorts (see 

Figure 5.3.21D). There was no difference in metabolite protein fraction between 

groups (Figure 4.3.17B) so no potential to obscure significant metabolite 

biomarkers, and protein levels correlated with almost all detectable metabolites 

(data not shown). Many cellular metabolomics investigations do normalise to protein 

content, but without specifying how (or indeed where) this protein is measured. To 

our knowledge, this is the first detailed report of optimised measurement and 

validation of metabolite fraction protein content as a normalisation factor for cellular 

metabolomics. 



Chapter 5: LC-MS Profiling of 
ANCA-Stimulated Monocytes 
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5.1 Introduction 
Activated immune cells require substantial energy consumption to produce 

proinflammatory cytokines and mediate other host defence mechanisms. Thus, it is 

unsurprising that cells alter their metabolism after activation. Disruption of nutrient 

supply can have detrimental effects on the pro-inflammatory monocyte functions, 

such as phagocytosis, cytokine production, and ROS generation among others.  

 

A range of pro-inflammatory cytokines are produced by monocytes to co-ordinate 

the innate immune response to pathogens. Inhibition of glycolysis can abrogate 

cytokine production in monocytes and monocyte-derived cells (DCs [366], 

macrophages [367] & microglia [368]). Inhibition of glycolysis by 2-deoxy-D-

glucose (2-DG) decreased IL-1β, IL-6, and TNF-α in LPS, Pam3, and C. albicans 

stimulated primary monocytes [97, 124]. Glucose-deprived monocytes do not 

appear functionally impaired, though did suffer at 24h in the absence of sugar [133]. 

Manipulation of additional metabolic pathways can influence cytokine production. 

Dimethyl itaconate is a derivative of itaconate, a metabolite with established anti-

inflammatory roles in macrophages. Dimethyl itaconate decreased IL-1β, IL-6 and 

IL-10 levels, without affecting TNF-α or lactate [97]. Inhibition of glycolysis (mTOR), 

glutaminolysis (glutaminase), or OXPHOS (ATP synthase) abrogated C. albicans-

induced cytokine production, but FAO and PPP did not play a role [124]. 

Hypermetabolic RA monocytes use lipid metabolism to fuel CCL20 production in the 

synovium [86]. Disease- and stimulus-specific cytokine production in monocytes 

relies on differential metabolic pathways. How these pathways are involved in AAV 

remains to be discovered. 

 

Monocyte-lineage cells are a major source of IL-1β. Typically IL-1β production and 

release requires activation of the inflammasome complex by dual stimuli. Monocytes 

are unique in that they can produce IL-1β in response to a single trigger [121], 

including anti-MPO (see Section 3.3.5)[203, 238]. Glucose-dependent IL-1β 

production was initially demonstrated in macrophages and causes specific TCA-

cycle “breaks” at succinate dehydrogenase and isocitrate dehydrogenase [8]. 

Primary human monocytes exhibit a similar dependence on glycolysis for IL-1β 

production. 2-DG inhibited LPS-induced IL-1β [97, 124], although glucose-deprived 

monocytes had comparable cytokine production [85]. Modifying glutathione 

metabolism affected IL-1β production by Borrelia burgdorferi, largely at the (post-
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)translational level [302]. Blocking FAO increased IL-1β levels by shifting 

metabolism towards glycolysis [86]. Hypoxia also improved IL-1β release in these 

cells, presumably through HIF-1α. Monocytes appear to exploit multiple metabolic 

pathways to preserve IL-1β production, another example of the metabolic plasticity 

in these cells. 

 

Other monocyte defence functions such as ROS generation and phagocytosis are 

important in AAV [236, 238, 369, 370] and heavily reliant on manipulating cellular 

metabolism. Glucose-deprived monocytes had reduced ROS production after LPS 

stimulation, but had comparable phagocytosis rates to normally cultured cells [85]. 

Glycolysis and the PPP are crucial for monocyte ROS production by C. albicans 

activation [124]. Neither hypoxia nor 2DG had any impact on phagocytosis rates in 

LPS-activated cells, but inhibition of OXPHOS by rotenone significantly reduced the 

phagocytic capacity of Pam3CysSK4 (Pam3)-stimulated monocytes [97]. OXPHOS, 

but not glycolysis, seems to be an important determinant of the phagocytic capacity 

of human monocytes. These findings highlight the stimulus determines the 

metabolic and functional response of monocytes. 

 

To date the number of metabolomic profiling investigations in primary monocytes 

have been limited to those discussed above (see Figure 1.3.1). Furthermore, these 

studies have generally involved a 24-hour stimulation timepoint/period. Raulien et 

al. noted broad decreases in metabolite levels after 6 hours of LPS-stimulation [85]. 

These early-stage decreases were hypothesised to be triggered by AMPK activation 

which drives the switch to catabolic metabolism. Accumulation of stimulus-specific 

functional metabolites can then occur. A longer-term investigation of a validated 

sepsis model in THP1 cells [96] monitored the metabolic flux brought on by LPS. 

Early (8 hour) metabolic changes during immune activation were defined by 

increases in a number of lipid species, protein breakdown, nucleotide enrichment, 

and breaks in the TCA cycle at succinate dehydrogenase (SDH) and aconitase 

[371]. This metabolic reprogramming tracks a shift from anabolic immune activation 

during early activation, to catabolic energy-conserving process during immune 

deactivation, and restoration of energy balance and homeostasis during resolution. 

These early changes in the monocyte metabolome that precede their inflammatory 
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outputs further highlight the metabolic flexibility of monocytes and implore more in-

depth study. 

 

Metabolites can also exert additional functional effects/modification secondary to 

their role in energy production [372, 373]. Mitochondrial TCA cycle metabolites 

contribute to chromatin modifications and DNA methylation to co-ordinate immune 

responses [374]. In addition to its role in the TCA cycle and FAO, α-ketoglutarate 

can skew M1/M2 macrophage polarisation and influence trained innate immunity via 

epigenetic reprogramming and HIF1α degradation, respectively [20, 22]. Succinate 

accumulation can promote inflammation in macrophages through mitochondrial 

ROS generation and HIF-1α activation [8, 299]. Even microbial metabolites have 

been shown to alter immune function and exacerbate autoimmune disease [375-

377]. The contributions of metabolites to ANCA-induced monocyte activation (or 

priming) have not yet been determined. In this chapter we profile the metabolome 

of ANCA-stimulated monocyte using optimised LC-MS methods, in an effort to see 

how they relate to pro-inflammatory functions. 
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5.2 Experimental Methods 

5.2.1 Hypothesis 
I. Increases in glycolysis and OXPHOS in ANCA-stimulated monocytes feed 

into specific, diverse metabolic pathways to trigger unique metabolic 

responses. 

II. These metabolic responses are different in anti-MPO- and anti-PR3-treated 

cells. 

III. Metabolic perturbations are associated with inflammatory outputs in ANCA-

stimulated cells. 

5.2.2 Methods 
This chapter describes metabolomic profiling of ANCA- and LPS- stimulated 

monocytes by LC-MS. The methods used here have been optimised for primary 

monocytes as explicated in Chapter 4. Figure 5.2.1 summarises the experimental 

methods used and outline and distinguishes the experimental cohorts for this work. 

Full details of methods used can be found in the appropriately labelled sections of 

Chapter 2. 

5.2.3 Experiment Outline 
The methods used to investigate the hypotheses above are summarised in Figure 

5.2.1. Two cohorts of stimulated monocytes were analysed: a Primary (n=6), and a 

Secondary cohort (n=24). In both groups, CD14+ monocytes were isolated from 

whole blood taken from haemochromatosis patients (see Section 2.2). Monocytes 

were stimulated for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against 

MPO or PR3, or 200ng/ml LPS. Cells were prepared for metabolomic analysis (see 

Section 2.9.2) and analysed by LC-MS (see Section 2.9.3). Residual protein 

concentrations were measured by PierceTM BCA assay, and ELISA and LDH assays 

were carried out on cell supernatants to measure cytokine production and cell death, 

respectively. Additional flow cytometry experiments were performed on freshly 

isolated (T0) monocytes in the Secondary cohort. Cytospin slides were also 

prepared for T0 monocytes and for each of the treatment groups at the end of the 

4-hour stimulation in these replicates. 
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Figure 5.2.1 Diagrammatic Representation of Techniques Used in Chapter 5. Overview 

of experimental plan and techniques used to profile the metabolome of ANCA- (and LPS-) 

stimulated monocytes.  
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5.2.3.1 LC-MS Method Adjustments between Primary and 
Secondary Metabolomic Profiling Cohorts 

An optimised LC-MS method was adopted for metabolomic profiling of ANCA- and 

LPS-stimulated monocytes and used in the Primary analysis (n=6). A slight change 

was made to chromatography conditions in the Secondary experiments (n=24). To 

reduce the need for inter-run cleaning/passivation, the medronic acid deactivator 

additive (Agilent Technologies, 5191-4506) was omitted from Mobile Phase B and 

only included in Mobile Phase A in the Secondary cohort. A slight change to the 

gradient was made in the Secondary cohort as visualised by the dotted line in Figure 

5.2.2. Both methods dropped from 100% to 70% Mobile B at 11.5 mins. The Primary 

method gradient (dashed line) returned to 100% at 12 mins, but the Secondary 

method was modified to a lower ratio of Mobile B (60%) at 12.5 mins before returning 

to 100% at 13.5 mins until the end of the method. This slight modification in the 

gradient in the ESI- method allowed a better separation for the late eluting features. 

Post equilibration was also reduced from 5 mins to 2 mins. All other source 

conditions remained consistent between the pilot and secondary cohorts both 

methods performed comparably in terms of detectable metabolites (see Figures 

5.3.8 & 5.3.9). Experimental conditions were identical for the two cohorts, and 

additional flow cytometry and Geimsa staining experiments were carried out on the 

Secondary cohort (see Figure 5.2.1). 

 

Figure 5.2.2: Comparison of LC-MS Method Gradients for Metabolomic Profiling 

Experiments. An optimised LC-MS method was developed for untargeted metabolomic 

profiling of ANCA- and LPS-stimulated monocytes. The gradients are visualised here by 

plotting the percentage (%) of mobile phase B (90% ACN + 10mM ammonium acetate pH9, 

±5µM medronic acid) for the Primary (n=6, blue, included medronic acid) and Secondary 

(n=24, magenta, dotted line) cohorts.   
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5.3 Results 

5.3.1 Targeted Metabolomic Analysis does not Differentiate 
ANCA- and LPS-Stimulated Monocytes in a Pilot Primary 
Analysis 

Targeted analysis of metabolites included in the synthetic standard mix was carried 

out on ANCA- and LPS- treated monocytes in the Primary cohort as described in 

Section 2.9.5. 32 of the 53 metabolites in the mixture were detected in samples and 

PooledQC replicates. Statistical analysis was performed after data normalisation to 

residual protein content in the metabolite fraction as described in Section 2.5. Using 

these 32 metabolites, a Principal Component Analysis (PCA) plot was generated for 

the four treatment groups – unstimulated cells (NS), LPS, anti-MPO, anti-PR3 – and 

PooledQC samples. There was no clear separation of treatment groups evident 

from the PCA plot (Figure 5.3.1). Both anti-MPO- (blue) and anti-PR3-treated 

(green) monocytes showed moderate intra-group clustering, yet still overlapped with 

other treatment groups. PooledQCs (purple) grouped very well at the centre of the 

plot, indicating that they are a good representation of the sample set as a whole. 

Further, this means that variations observed between stimulation groups are a result 

of the stimulus and not the analytical technique. This analysis indicates that ANCA- 

and LPS-treated monocytes cannot be distinguished based on these 32 compounds 

alone, and additional analysis is required to determine the contribution of 

metabolism to ANCA activation in these cells. Reviewing normalised metabolite 

abundances (Figure 5.3.2) confirms that only subtle differences are evident between 

treatment groups. There is greater variation between metabolites (89.57%) than 

treatment (1.32%) as determined by 2-way ANOVA. Despite this there was a 

significant treatment effect seen in this Primary cohort analysis (p<0.0001), 

indicating that metabolism is distinct between the treatment groups compared to 

unstimulated cells.



 

Figure 5.3.1: Principal Component Analysis of Targeted Metabolites in ANCA- and LPS-Stimulated Monocytes in the Primary Cohort. CD14+ 

monocytes were isolated from PBMCs of healthy controls by MACS separation (n=6). Cells were plated and stimulated @37°C for 4 hours with 5μg/ml 

monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and 

targeted metabolomic analysis of 53 metabolites was completed. Area-under-the curve (AUC) values were normalised by log2 transformation and to 

metabolite fraction protein levels (measured by BCA). 32 of the 53 metabolites were detected in the experiment samples. A Principal Component 

Analysis (PCA) plot was generated for the four treatment groups and Pooled QC samples.



 
Figure 5.3.2: Heatmap Analysis of Targeted Metabolites in ANCA- and LPS-

Stimulated Monocytes in the Primary Cohort. CD14+ monocytes were isolated from 

PBMCs of healthy controls by MACS separation (n=6). Cells were plated and stimulated 

@37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 

200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and 

targeted metabolomic analysis of 53 metabolites was completed. 32 of the 53 metabolites 

were detected in experimental samples. Intergroup values are reported as BCA and log2 

normalised AUCs.   
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5.3.2 ANCA Stimulation Upregulates α-Ketoglutarate, 
Ethanolamine, and L-Histidine Production in Monocytes 

Metabolites measured in the targeted analysis were evaluated by ANOVA with 

Benjamini-Hochberg FDR correction. Three of the 32 metabolites were significantly 

altered among treatment groups and are displayed as individual dot plots in Figure 

5.3.3. Alpha-Ketoglutaric acid, ethanolamine, and histidine were all significantly 

increased in stimulated cells (Table 5.3.1). Alpha-Ketoglutarate is a TCA cycle 

intermediate and was significantly upregulated by LPS and ANCA stimulation. 

Ethanolamine is involved in glycerophospholipid metabolism and was increased by 

both ANCAs. Anti-PR3 treatment increased the amino acid histidine, with a similar 

(non-significant) elevation in anti-MPO-stimulated cells. Other metabolites 

approached statistical significance in individual analyses, but could not be 

considered, likely due to the small sample size. These increases represent 

upregulation of diverse metabolic pathways in ANCA stimulated monocytes. 

 

 
α-Ketoglutaric Acid Ethanolamine L-Histidine 

FC P-Value FC P-Value FC P-Value 

NS vs. LPS 1.7729 0.0404* 1.6103 0.1475 1.7921 0.0967 

NS vs. anti- MPO 2.4601 0.0025** 2.1951 0.0045** 3.4005 0.0526 

NS vs. anti-PR3 1.9526 0.0010*** 2.2716 0.0066** 2.0522 0.0051** 

Table 5.3.1: Fold Changes and P Values of Statistically Altered Metabolites as 

Measured by ANOVA. ANCA- and LPS-stimulated monocytes (n=6) were analysed by LC-

MS and evaluated by ANOVA with Benjamini-Hochberg FDR correction. Fold Change (FC) 

was calculated relating to unstimulated (NS) cells. NS: No Stimulation; LPS: 

lipopolysaccharide; MPO: anti-myeloperoxidase; PR3: anti-proteinase 3 
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Figure 5.3.3: Significantly Altered Metabolites in Targeted Analysis of ANCA- and 

LPS-Stimulated Monocytes in the Primary Cohort (n=6). CD14+ monocytes were 

isolated from PBMCs of healthy controls by MACS separation (n=6). Cells were plated and 

stimulated (or Not Stimulated, NS) @37°C for 4 hours with 5μg/ml monoclonal antibody 

(mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated 

monocytes were analysed by LC-MS and targeted metabolomic analysis of 53 metabolites 

was completed. BCA and log2 normalised AUC values were analysed by 2-way ANOVA 

with a Benjamini-Hochberg FDR correction comparing to paired unstimulated cells. Results 

for significantly altered metabolites are displayed as individual dot plots (A-C).   
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5.3.3 Untargeted Analysis Identifies Multiple Significant 
Metabolic Alterations in anti-MPO-Stimulated Monocytes 

Untargeted analysis of ANCA- and LPS-stimulated monocytes was carried out as 

described in Sections 2.9.7 and 2.9.8. Using the MassHunter ProFinder recursive 

feature extraction (RFE) algorithm, a total of 8,084 metabolite features were 

detected – 4,197 in the positive and 3,887 in the negative mode. Extraction blank 

samples comprising empty tubes which underwent the metabolite extraction 

process described in Section 2.9.2 were included in LC-MS analysis. Features 

present in these extraction blank injections were removed from analyses. Following 

blank removal and manual chromatography review 3,399 features were imported 

into MPP for further analysis. In order to prioritize high impact compounds in the 

identification pipeline only metabolites that were present in 100% of samples in all 

four treatment groups were considered for this initial analysis. This comprised 1,515 

compounds in the negative mode and 406 in the positive mode. A summary of the 

feature extraction workflow and associated peak numbers is provided in Figure 

5.3.4A.  

 

Statistically altered compounds in each treatment group were recognised using 

moderated t-test with a Benjamini-Hochberg FDR correction. Features with fold 

changes >2 (relative to unstimulated group) and p values below 0.1 were 

considered. Volcano plots for LPS-, anti-MPO-,and anti-PR3-treated monocytes are 

displayed in Figures 5.3.4B, C, & D respectively. A total of 194 significantly altered 

features were found to be significantly altered from the unstimulated cells based on 

these criteria. The majority (193/194) of these features were in the anti-MPO treated 

group (Figure 5.3.4C). Of note, all significant features were identified from 

compounds measured in ESI- ionisation mode. The highly significant feature in the 

LPS-treated cells had m/z 137.8993 and was measured at 8.43min. These results 

point to a significant metabolic signature in anti-MPO stimulated monocytes.  
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Figure 5.3.4: Volcano Plot Analysis of Untargeted Metabolites in ANCA- and LPS-

Stimulated Monocytes in the Primary Cohort. CD14+ monocytes were isolated from 

PBMCs of healthy controls by MACS separation (n=6). Cells were plated and stimulated 

@37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 

200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and 

untargeted metabolomic analysis was completed. 4,197 and 3,887 features were initially 

detected in ESI+ and ESI, respectively (A), and irrelevant peaks removed by manual 

chromatography review and extraction blank analysis. features present in all samples of all 

four treatment groups (n=1,921) were analysed by moderated t-test with a Benjamini-

Hochberg FDR correction. Treatments were compared to unstimulated cells and features 

with fold changes >2 and p values <0.1 were considered. Volcano plots for LPS- (B), anti-

MPO- (C), and anti-PR3- (D) treated monocytes are shown and significantly altered features 

are highlighted in red. Fold change and p-value thresholds are shown in green lines on the 

X and Y axes respectively.   
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5.3.4 Lipid Metabolism is Increased in anti-MPO Stimulated 
Monocytes. 

We attempted to annotate the significantly altered features (all detected in ESI-) as 

described in Section 2.9.9. 145 of the 194 features imported into ID Browser were 

assigned tentative IDs. These IDs were assigned based on accurate mass and 

isotopic distribution obtained from the Agilent MassHunter METLIN Metabolomics 

Database and represent mid-level confidence in identification (compared to high-

level confidence in the targeted analysis)[25]. Eighty-three of these (57.24%) had 

an identification score above 70. Normalized AUC values for these 83 metabolites 

are plotted in the heatmap in Figure 5.3.5A, in ascending p value order. A subtle 

metabolite signature is reflected by increased AUC values evident in anti-MPO-

treated cells. Interestingly, almost all of the tentatively assigned metabolite IDs for 

significantly altered metabolites were lipids and lipid-like molecules (Figure 5.3.5B). 

Fatty acyls and glycerophospholipids were the most represented metabolite classes 

among significantly altered metabolites in ANCA-stimulated monocytes. 

 

Individual plots of the most significantly altered compounds with their tentatively 

assigned IDs are shown in Figure 5.3.6. Differences between treatment groups were 

further scrutinised by ANOVA with Friedman’s post-hoc testing. The most prominent 

changes were indeed seen in the anti-MPO treated cells. When subjected to these 

additional statistical tests a number of compounds also appear to be increased in 

anti-PR3 treated cells. The most significantly altered metabolite was annotated as 

palmitic (hexadecenoic) acid, which was increased in both anti-MPO- and anti-PR3-

stimulated cells. These results reveal an apparent increase in lipid metabolism in 

ANCA-stimulated cells, particularly anti-MPO. 
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Figure 5.3.5: Untargeted Metabolite Analysis of ANCA- and LPS-Stimulated 

Monocytes in the Primary Cohort. CD14+ monocytes were isolated from PBMCs of 

healthy controls by MACS separation (n=6). Cells were plated and stimulated @37°C for 4 

hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml 

LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and untargeted 

metabolomic analysis was completed. Features present in all samples and all four treatment 

groups (n=1,921) were compared to unstimulated cells using a moderated t-test with a 

Benjamini-Hochberg FDR correction. 194 significantly altered peaks were imported into 

IDBrowser and assigned tentative IDs. (A) Heatmap of BCA and log2 normalised AUC 

values for metabolites with ID scores >70 (n=83). (B) Metabolites annotated based on 

accurate Mass and isotopic distribution with scores >70 as classified by the Human 

Metabolome Database (https://hmdb.ca/classyfication). 
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Figure 5.3.6: Significantly Altered Metabolites in Untargeted Analysis of ANCA- and 

LPS-Stimulated Monocytes in the Primary Cohort. CD14+ monocytes were isolated 

from PBMCs of healthy controls by MACS separation (n=6). Cells were plated and 

stimulated @37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against 

MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-

MS and untargeted metabolomic analysis was completed. Significantly altered features 

present in all samples of all four treatment groups were annotated based on accurate mass 

and isotopic distribution, ID scores >70 were analysed by 2-way ANOVA with a Benjamini-

Hochberg FDR correction. Log2 and BCA-normalised AUC values for significantly altered 

metabolites are displayed as individual dot plots (A-H).   
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5.3.5 Power Analysis Specifies Biological Replicate 
Requirements for Subsequent Metabolomic Experiments 

Initial findings appear to demonstrate increased lipid metabolism in ANCA-

stimulated cells. Additional experiments are required to confirm these findings, and 

to determine the ideal sample size for such an experiment, power analyses were 

conducted using results from the Primary cohort targeted analysis. Initial power 

analysis by G*Power (Version 3.1, Faul et al. [378]) calculated mean and median 

sample size estimates (SSE) for intergroup comparisons on a per metabolite basis 

(Figure 5.3.7A) using BCA-normalised AUC values for the 32 detectable metabolites 

included in the synthetic standard mix. Mean values were substantially higher in the 

LPS and PR3 groups, further demonstrating the variation between metabolites and 

the relevance (or lack thereof) of these metabolites to ANCA-induced changes. 

Median SSE values were below 20 for all three treatment groups – a more feasible 

and manageable sample size for metabolomic validation experiments. Additional 

analyses with raw AUC values and log2-normalized data returned much higher 

SSEs than the BCA-normalized data (data not shown). This further demonstrates 

the utility of BCA normalization for improving interpersonal variability in 

metabolomics experiments. 

 

An additional power analysis was carried out using the MetSizeR package [379]. 

Input settings specified a graduation of eight different sample sizes with 100 

datasets simulated for each of these. Desired FDR was set to 0.05 and an expected 

dataset of 1,000 metabolites was explored of which 5% were estimated to be 

distinguished between groups. This was a conservative estimate based on the 

~10% of statistically altered metabolites in the Primary cohort (see Figure 5.3.4A). 

Figures 5.3.7B, 5.3.7C, and 5.3.7D show the FDR curves obtained via simulation 

for comparisons of unstimulated cells versus LPS, anti-MPO and anti-PR3 

stimulation, respectively. The solid red curve gives a mean FDR derived from the 

simulated datasets with dashed lines showing 95% uncertainty bounds. These plots 

would suggest an additional 23 biological replicates to maintain an FDR below 5%. 

Combining results of these 2 power analyses, an additional 24 replicates will be 

used in the subsequent metabolomic profiling experiment. 
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Figure 5.3.7: Power Analysis of Monocyte Metabolomic Profiling Results for 

Subsequent Experiments. Power analysis to determine required sample sizes (n 

numbers) for experimental validation was carried out using results from targeted 

metabolomic analysis of the Primary cohort (n=6). Initial G*Power [378] analysis (A) 

compared mean AUC values of individual BCA-normalised metabolites in each of the 3 

treatment groups (LPS, anti-MPO, and anti-PR3) to unstimulated cells (NS) by t-test. 

Sample sizes for each metabolite were measured and sample size estimated were reported 

as mean and median for the intergroup comparison. Additional power analyses used 

methods described by Nyamundanda et al. [379] to generate FDR curves for LPS (B), MPO 

(C) and PR3 (D) versus unstimulated cells. The solid red curve gives a mean FDR while 

dashed lines show 95% uncertainty bounds for the FDR derived from the simulated 

datasets. Optimum sample numbers for each data set are highlighted with green lines. 
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5.3.6 Synthetic Standard Formulation Measurements are not 
Entirely Consistent Between Metabolomic Profiling Cohorts 

A synthetic standard formulation was analysed by HILIC-Z LC-MS in both the 

primary and secondary cohorts (see Section 2.9.2.2). Metabolite abundances for 

compounds included in this synthetic standard formulation were determined by 

targeted analysis. 52 of the 53 synthetic standard metabolites were detected by the 

optimised LC-MS method across the positive and negative ESI modes (Figure 

5.3.8A). The same sample was injected for both the primary and secondary 

experiments and the same 52 metabolites consistently detected across runs. A PCA 

plot (Figure 5.3.8B) was generated to demonstrate the level of consistency in AUC 

values for these metabolites across the runs. Metabolites detected in the negative 

mode (circles) clustered well together for both the primary (blue) and secondary 

(gold) cohorts. This same degree of clustering was not seen for metabolites the 

ESI+ (triangles), indicating higher inter-run variance among these compounds. 

Indeed, when synthetic standard AUC levels were compared across runs (Figure 

5.3.8C & 5.3.8D), synthetic standard metabolites measured in ESI+ had a weaker 

inter-run correlation than ESI- (R2=0.4750 ESI+ vs. R2=0.7058 ESI-, p<0.0001). 

There was also greater intra-run variation in the Secondary cohort for both ionisation 

modes as measured by standard deviation (data not shown). Despite the same 

replicates being injected each time, inter- and intra-run variability are evident in the 

synthetic standards. Without appropriate batch correction these data show that the 

two monocyte metabolomic profiling cohorts cannot (and thus, will not) be combined 

in their current forms. 



 

Figure 5.3.8: Comparison of Synthetic Standard Metabolite Coverage and Consistency Across Metabolomic Profiling Experiments. The 

number of synthetic standard metabolites (n=53) detected across both ionisation modes in the synthetic metabolite mixture was compared by Venn 

Diagram (A)[380]. Principal Component Analysis (PCA) was carried out to detect consistency between the initial metabolomic profiling experiment 

(“Primary”) and the subsequent Secondary cohort (“Secondary”) for metabolites detected in ESI+ (n=36) and ESI- (n=47) modes (B). Metabolite AUCs 

were compared for Primary and Secondary experiments in ESI+ (C) and ESI- (D) ionisation modes. Metabolite values are plotted as mean (and error) 

of log2-transformed AUC values. Simple linear regression was used to determine best-fit lines for the data and R2 values calculated by Pearson 

correlation. 



5.3.7 PooledQC Samples are not Consistent Between 
Metabolomic Profiling Cohorts 

PooledQC samples were prepared (See Section 2.9.2.1) for each of the respective 

profiling cohorts. These PooledQC samples were analysed by LC-MS and 

metabolite abundances for compounds included in the synthetic standard 

formulation were determined. There were 32 and 44 metabolites detected in the 

Primary and Secondary PooledQC samples, respectively. Two of these compounds 

were detected in the Primary cohort alone, and 14 were unique to the Secondary 

cohort (Figure 5.3.9A). There were 30 metabolites common to both cohorts detected 

in the PooledQC samples. It is very likely that the higher number of biological 

replicates included in the Secondary experiment (n=24 vs. n=6) drove this increase 

in detected metabolites as they surpassed minimum height filters. PCA analysis was 

carried out on common metabolites which were detected in the same ionization 

mode(s)(n=19). There was a clear divergence of PooledQC samples among the two 

profiling cohorts (Figure 5.3.9B). This effect persisted even after correcting for the 

number of biological replicates in the sample, the metabolite fraction BCA OD 

readout (595nm), and baselining by Z-transformation to correct data from different 

sources (data not shown). There was further intra-run variability evident in the 

Secondary cohort (gold). PooledQC samples towards the end of the run showed 

substantial signal drift, with later injections digressing from the core cluster. Despite 

these discrepancies area measurements for the Primary and Secondary cohorts, 

PooledQCs showed a significant (albeit moderate) inter-run correlation (Figure 

5.3.9C, R2=0.6159, p<0.0001). Only metabolites detected in both experiments and 

measured in the same ionisation mode (n=19) were included in this analysis. Based 

on the above results it was determined that the Primary and Secondary experiments 

could not be combined in their current forms. As such the results for the Secondary 

cohort will be considered as a separate experimental result.  
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Figure 5.3.9: Comparison of PooledQC Metabolite Coverage and Consistency Across 

Metabolomic Profiling Experiments. The number of metabolites included in the synthetic 

standard mixture (n=53) detected across both ionisation modes in PooledQC samples was 

compared by Venn diagram (A)[380]. Principal Component Analysis (PCA) was carried out 

to detect consistency between the initial metabolomic profiling experiment (“Primary”) and 

the subsequent Secondary cohort (“Secondary”) for detected metabolites (B). Metabolite 

AUCs were compared for Primary and Secondary experiments (C) with metabolite values 

plotted as log2 transformed AUC values and error bars representing standard deviation. 

Simple linear regression was used to determine best-fit lines for the data and R2 values 

calculated by Pearson correlation. Only metabolites detected in both experiments and 

measured in the same ionisation mode (n=19) were included in this analysis.   



   
 

201 
 

5.3.8 Technical Issues in the ESI+ Secondary Cohort LC-MS 
Experiment Caused Significant Variation in PooledQC 
Samples 

The Secondary cohort PooledQC sample showed substantial variation throughout 

the ESI+ LC-MS run (see above). Intra-run %CV was higher for metabolites 

measured in ESI+ (n=9) than ESI- (n=28)(Figure 5.3.10A). 19 metabolites from the 

synthetic standard mixture were detected by both ionisation modes in the 

Secondary PooledQC samples (Figure 5.3.10B), and only 4 metabolites were 

uniquely detected in the positive mode. A PCA plot was generated for the shared 

metabolites (n=19) to compare variation by ionisation mode (Figure 5.3.10C). The 

negative mode samples clustered together very well with limited variation (red). 

Conversely, the same metabolites measured in positive mode (gold) showed 

substantial variation and drift, particularly towards the end of the run. This was 

caused by a pressure drop which led to the worklist being reset and the final 25% 

of samples rerun. Due to the efficient randomisation, affected samples evenly 

spanned the four treatment groups. Excluding ESI+ samples acquired after the 

restart (and analysed using an unpaired t-test), of the four metabolites detected in 

ESI+ alone we see no significant differences in nicotinamide adenine dinucleotide 

(NAD) or trimethylamine n-oxide (TMAO) between treatment groups (Figure 5.3.11A 

& 5.3.11B, respectively). The isomers 1- and 3-methyl-L-histidine were only 

effectively separated in positive mode. AUC values for 3-methyl-L-histidine were 

significantly lower than 1-methyl-L-histidine (Figure 5.3.11C). Ethanolamine, which 

was significantly altered in the Primary cohort was not detected in the Secondary 

sample set. Due to this technical variation and given that all significantly altered 

metabolites from the primary cohort untargeted analysis were measured in the 

negative mode (see Figure 5.3.4), only the ESI- LC-MS run was considered in the 

Secondary cohort analysis. Unless otherwise specified, all subsequent metabolite 

results for the Secondary cohort have been measured in ESI- only.  
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Figure 5.3.10: Technical Variation in ESI+ Secondary Cohort PooledQC Samples. The 

Secondary cohort PooledQC sample showed significant intra-run variation in ESI+ mode. 

Log2-transformed values for synthetic standard metabolites measured in both ionisation 

modes were compared (A). Synthetic standard metabolites detected across ionisation 

modes were compared [380]. A PCA plot was generated for the 19 metabolites detectable 

across both methods to visualise intra-run variation (C).  
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Figure 5.3.11: ESI+ Unique Metabolites in Pre-Interruption Samples in the Secondary 

Cohort. CD14+ monocytes were isolated from PBMCs of healthy controls by MACS 

separation (n=24). Cells were plated and stimulated @37°C for 4 hours with 5μg/ml 

monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-

stimulated monocytes were analysed by LC-MS in ESI+ mode and targeted analysis carried 

out BCA- and Log2-normalised AUCs. Only a portion of samples acquired prior to a technical 

interruption were analysed. NAD (A), TMAO (B) and 1/3-methyl-L-histidine (C) were 

uniquely detected in ESI+. Differences between treatment groups were analysed by 

Kruskal-Wallis test to account for missing values, and 1/3-methyl-L-histidine levels 

compared by Wilcoxon matched-pairs signed rank test.  
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5.3.9 Targeted Analysis of the Larger Secondary Cohort Reveals 
Additional Metabolite Alterations in LPS- and ANCA-
Stimulated Monocytes. 

Considering just ESI- LC-MS run, 29 of the 53 synthetic standard metabolites (40 of 

which were detectable in PooledQC samples) were detected in experimental 

samples. This discrepancy is likely due to metabolites falling below minimum height 

filters in biological replicates. An overlay of the total ion chromatograms (TIC) shows 

slight shifts between peaks and minimal differences between treatment groups 

(Figure 5.3.12A). AUC values were log2 transformed and normalised to metabolite 

fraction BCA values for each sample. PCA analysis showed treatment groups 

largely overlapped (Figure 5.3.12B). LPS-treated cells did cluster slightly better than 

other treatment groups when considering all 29 detected synthetic standard 

metabolites. A heatmap of BCA-normalised AUC values by treatment group is 

shown in Figure 5.3.13. Contrary to the anti-MPO signature seen in the Primary 

cohort, there was a more profound shift in LPS-stimulated metabolite levels. 

Although this was rather subtle, there were eleven metabolites significantly altered 

among the three treatment groups (Table 5.3.2). These mostly comprised amino 

acids, as well as TCA cycle metabolites (fumaric acid, L-malic acid) and nucleotides 

(inosine 5’-monophosphate [IMP]). Surprisingly none of these significantly altered 

metabolites overlapped with those discovered in the primary cohort. α-ketoglutaric 

acid was not found to be significantly altered in the Secondary cohort, and 

ethanolamine and L-histidine were not detected in ESI-. Metabolites with significant 

alterations in at least two treatment groups are displayed as individual dot plots in 

Figure 5.3.14. Considering only the metabolites that were significantly altered in the 

targeted analysis did not particularly alter the appearance of the PCA plot (data not 

shown).  
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Figure 5.3.12: Principal Component Analysis and Total Ion Chromatograms of 
Targeted Metabolites in ANCA- and LPS-Stimulated Monocytes in the Secondary 
Cohort. CD14+ monocytes were isolated from PBMCs of healthy controls by MACS 
separation. Cells were plated and stimulated @37°C for 4 hours with 5μg/ml monoclonal 
antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated 
monocytes were analysed by LC-MS and targeted metabolomic analysis of 53 metabolites 
was completed in ESI-. Overlay of the TIC shows a perfect overlay with the exception of 
one replicate (A). Area-under-the curve (AUC) values were normalised by Log2 
transformation and to metabolite fraction protein levels (measured by BCA). 29 of the 53 
metabolites were detected in the experiment samples. Principal Component Analysis (PCA) 
plots were generated for the four treatment groups – NS (blue), LPS (red), MPO (gold), PR3 
(grey), and Pooled QC samples.  
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Figure 5.3.13: Heatmap Analysis of Targeted Metabolites in ANCA- and LPS-

Stimulated Monocytes in the Secondary Cohort. CD14+ monocytes were isolated from 

PBMCs of healthy controls by MACS separation (n=24). Cells were plated and stimulated 

@37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 

200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and 

targeted metabolomic analysis of 53 metabolites was completed. 29 of the 53 metabolites 

were detected in experiment samples. Intergroup values are reported as BCA and Log2 

normalised AUCs. 

 



 

Compound 
ANOVA 
P Value 

LPS anti-MPO anti-PR3 

Mean 
Diff. 

Fold 
Change 

Q Value P Value 
Mean 
Diff. 

Fold 
Change 

Q Value P Value 
Mean 
Diff. 

Fold 
Change 

Q Value P Value 

4-Hydroxy-L-
Proline 

0.0014 -0.5147 1.4287 <0.0001 <0.0001 -0.2526 1.1913 0.0204 0.0136 -0.0210 1.0147 0.8471 0.8471 

β-alanine 0.0004 0.4022 -1.3215 <0.0001 <0.0001 0.0884 -1.0632 0.2633 0.2633 0.1508 -1.1102 0.0555 0.0370 

Fumaric acid 0.0059 -0.1274 1.0923 0.0004 0.0002 -0.1400 1.1019 0.0004 0.0003 0.0350 -1.0246 0.5040 0.5040 

Aspartic Acid 0.0001 0.4735 -1.3885 <0.0001 <0.0001 0.0991 -1.0711 0.2287 0.2287 0.1793 -1.1323 0.0235 0.0157 

Isoleucine 0.0014 -0.5070 1.4211 <0.0001 <0.0001 -0.2847 1.2182 <0.0001 <0.0001 -0.2832 1.2169 0.0007 0.0007 

Leucine 0.0008 -0.5847 1.4997 <0.0001 <0.0001 -0.2947 1.2266 0.0001 <0.0001 -0.3361 1.2623 0.0005 0.0005 

Lysine 0.0012 -0.3820 1.3031 <0.0001 <0.0001 -0.1389 1.1011 0.0177 0.0118 -0.1270 1.0920 0.0532 0.0532 

Phenylalanine 0.0012 -0.6178 1.5345 0.0002 <0.0001 -0.2372 1.1787 0.0283 0.0283 -0.3993 1.3189 0.0118 0.0079 

Proline 0.0178 -0.3308 1.2577 <0.0001 <0.0001 -0.0700 1.0497 0.3375 0.2250 -0.0204 1.0142 0.7473 0.7473 

Serine 0.0000 -0.2873 1.2204 0.0011 0.0004 -0.0883 1.0631 0.1796 0.1796 0.1216 -1.0880 0.1796 0.1549 

Sarcosine 0.0009 -0.7809 1.7182 0.0007 0.0002 -0.2557 1.1939 0.2054 0.2054 -0.1619 1.1187 0.2054 0.1657 

Table 5.3.2: Statistical Results of Significantly Altered Metabolites in Targeted Analysis of Secondary Cohort. Fold Change was calculated 

relative to unstimulated cells.



 
Figure 5.3.14: Significantly Altered Metabolites in Targeted Analysis of ANCA- and 

LPS-Stimulated Monocytes in the Secondary Cohort. CD14+ monocytes were isolated 

from PBMCs of healthy controls by MACS separation (n=24). Cells were plated and 

stimulated @37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against 

MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-

MS and targeted metabolomic analysis of 53 metabolites was completed. 29 of the 53 

metabolites were detected in experiment samples. BCA and Log2 normalised AUC values 

were analysed by 2-way ANOVA with a Benjamini-Hochberg FDR correction. Results for 

significantly altered metabolites in 2 or more treatment groups are displayed as individual 

dot plots (A-H).  
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5.3.10 Untargeted Analysis of the Larger Secondary Cohort 
Reveals Additional Metabolite Alterations in LPS- and 
ANCA-Stimulated Primary Monocytes. 

Untargeted analysis of ANCA- and LPS-stimulated monocytes was carried out as 

described in Sections 2.9.7 and 2.9.8. A summary of the untargeted workflow for 

the Secondary cohort is shown in Figure 5.3.15A. A total of 1,804 features were 

detected using RFE wizard in ESI-. After manual chromatography review and 

removal of peaks present in extraction blank samples 1,380 features were imported 

into MPP in .CEF format. These were assigned tentative metabolite IDs in ID 

browser, where 457 entities were assigned metabolite IDs and a further 733 were 

assigned formulae. Of those assigned metabolite IDs 58.86% had an overall ID 

score ≥70. Significantly altered entities were identified by Mann-Whitney paired 

testing with a Benjamini-Hochberg FDR correction. Only metabolites with a fold 

change ≥1.5 and a p value <0.05 were considered significant. There were 146, 59, 

and 60 significantly altered metabolites in the LPS-, anti-MPO-, and anti-PR3-

activated cells compared to unstimulated cells, respectively (Figure 5.3.15B). This 

amounted to 225 significantly altered entities in this Secondary cohort. Seven were 

common to all three groups, and two were shared between both ANCAs. 33 and 44 

features were unique to anti-MPO and anti-PR3-stimulated cells respectively. 

Volcano plots comparing treatment groups to unstimulated cells are shown in Figure 

5.3.16.  

 

To better compare differences between all treatment groups we measured 

differences to unstimulated cells by ANOVA and Benjamini-Hochberg FDR 

correction. This highlighted 83 metabolites which were significantly different across 

LPS- and ANCA-stimulated monocytes. PCA plots for all untargeted peaks 

(n=1,380) and statistically significant features (n=225) are shown in Figure 5.3.17A 

& 5.3.17B, respectively. Considering just the significant peaks greatly improved 

separation of the LPS and unstimulated cells in particular, proving that ANCA-

stimulated cells can be discriminated on the basis of specific metabolic pathways. 

Anti-PR3 treated cells continued to cluster with unstimulated cells, further 

demonstrating their meagre metabolic response. Anti-MPO stimulated cells sat 

between the unstimulated/anti-PR3 and LPS groups.   



   
 

210 
 

 

Figure 5.3.15: Untargeted Analysis Workflow for Monocyte Metabolomic Secondary 

Cohort. CD14+ monocytes were isolated from PBMCs of healthy controls by MACS 

separation (n=24). Cells were plated and stimulated @37°C for 4 hours with 5μg/ml 

monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-

stimulated monocytes were analysed by LC-MS and untargeted metabolomic analysis was 

completed. A summary workflow for the untargeted metabolomic analysis is shown here 

with the numbers of features/entities specified at each stage (A). A Venn diagram showing 

the shared and unique significantly altered entities by LPS (red), anti-MPO (blue), and anti-

PR3 green) stimulation (B).



 
Figure 5.3.16: Volcano Plot Analysis of Untargeted Metabolites in ANCA- and LPS-Stimulated Monocytes in the Secondary Cohort. CD14+ 

monocytes were isolated from PBMCs of healthy controls by MACS separation (n=24). Cells were plated and stimulated @37°C for 4 hours with 5μg/ml 

monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. Extracted metabolites were analysed by LC-MS and untargeted metabolomic 

analysis was completed. 1,804 features were initially detected and those present in extraction blanks were removed. Tentative metabolite ID were 

assigned in ID Browser. Features were analysed by Mann-Whitney paired test with a Benjamini-Hochberg FDR correction. Treatments were compared 

to unstimulated cells and features with fold change ≥1.5 and p value <0.05 were considered significant. In total 230 metabolites were significantly altered 

across treatment groups. Volcano plots for LPS- (A), MPO- (B), and PR3- (C) treated monocytes are shown and significantly upregulated features are 

highlighted in red and downregulated features in dark blue. Light blue and orange features did not meet the fold change threshold limits, and grey 

features were not significant. Fold change and p-value thresholds are shown in green lines on the X and Y axes respectively.



 
Figure 5.3.17: Principal Component Analysis of Untargeted Metabolites in ANCA- and 

LPS-Stimulated Monocytes in the Secondary Cohort. CD14+ monocytes were isolated 

from PBMCs of healthy controls by MACS separation. Cells were plated and stimulated 

@37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 

200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-MS and 

untargeted metabolomic analysis was completed on BCA-normalised AUC data. Principal 

Component Analysis (PCA) plots were generated for the four treatment groups (NS, LPS, 

MPO, and PR3) for all detectable entities (n=1,380, A) and entities that were significantly 

different compared to unstimulated cells as measured by ANOVA (n=83, B). 
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5.3.11 Class Predication Analysis Highlights Important 
Distinguishing Metabolites in Activated Monocytes 

To better understand the specific influence and fundamental relations of these 

metabolites to the treatment matrices, class prediction analyses were carried out 

using partial least squares discriminant analysis (PLS-DA) and random forest (RF) 

analysis. Mean intragroup confidence measures were also higher in RF than PLS-

DA. Variable importance in projection (VIP) scores and heatmaps for PLS-DA and 

RF are show in Figure 5.3.18A & 5.3.18B, respectively. VIP scores above 1 were 

considered significant. There were 29 and 17 metabolites above the VIP score 

threshold for the for PLS-DA and RF analyses, respectively, with eight metabolites 

common to both (see Table 5.3.3). 

 

 A heatmap for these metabolites is displayed in Figure 5.3.19. Where possible 

metabolites were annotated as proposed formulae, and where that was not 

attainable by their mass and RT values (e.g., 601.2048@4.95). As with the Primary 

cohort, we see an increase in a number of lipid-like molecules, particularly several 

glycerophosphoinositols (PI) and glycerophosphoserine (PS) species. Of note 

itaconic acid – an important modulator of inflammatory responses in macrophages 

– was found to be highly upregulated in LPS-activated cells at this early timepoint. 

Myo-inositol was previously reported as a urine biomarker of active AAV [261]. Myo-

inositol mono- and diphosphate were increased in ANCA-stimulated cells, which 

may suggest increased activity through associated pathways. As MS/MS was not 

recorded in these metabolites we cannot be completely confident in these 

metabolite IDs. Additional validation experiments are required to confirm the 

influence of these metabolic pathways on monocyte function in AAV. 
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Figure 5.3.18: Class Prediction Analyses of Significantly Altered Untargeted 

Metabolites in ANCA- and LPS-Stimulated Monocytes in the Secondary Cohort. 

CD14+ monocytes were isolated from PBMCs of healthy controls by MACS separation 

(n=24). Cells were plated and stimulated @37°C for 4 hours with 5μg/ml monoclonal 

antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated 

monocytes were analysed by LC-MS and untargeted metabolomic analysis was completed. 

Features present in all four treatment groups (n=336) were compared to unstimulated cells 

using ANOVA with a Benjamini-Hochberg FDR correction. 83 significantly altered peaks 

were annotated using IDBrowser based on their accurate mass and isotopic distribution. 

Class prediction analysis was carried out by PLS-DA (A) and Random Forrest analysis (B), 

and VIP scores were plotted.  
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 PLS-DA VIP Score RF VIP Score 

Hydroxytetradecanoyl-CoA 1.0330  

Glyerophosphoinositol  4.0067 

419.1386@4.97  2.5600 

601.2048@4.95 1.3103  

Aminomuconic acid 2.2190  

C14 H22 N4 O6 P3 1.5498  

C24 H29 N22 O4 P2 1.3939  

C32 H16 N7 O28 P3 S 1.0602  

C4 H9 N5 O S 1.8895 1.2733 

C44 H83 N5 O10 P  1.4067 

C45 H90 O22 P2 1.2413  

C5 H4 N2 1.2524  

C6 H11 N O4 S 1.5327  

C7 H12 O3 P 1.0529  

C9 H21 N O5 1.6914  

CL(1'-[18:2],3'-[18:2]) 1.2270  

Asparagine  1.3400 

myo-Inositol-1,3-diphosphate 1.5128  

myo-Inositol-3-phosphate 1.8131  

Erythronic acid  1.4267 

Glu Thr Met 1.9722 1.5400 

Itaconic acid 2.4361 3.0733 

Lactic acid  1.0200 

Ribulose 5-phosphate 1.1641  

PI(35:1) 1.5658  

PI(38:6) 1.1757 1.2267 

PI(20:4) 1.1478  

PI(45:2) 1.3391  

PI(40:7) 1.6075 2.3400 

PI(40:7)  1.5267 

PS(40:3) 1.1001  

PS(42:3)  1.1067 

PS(40:6) 1.5597  

PS(44:7) 1.0578 1.1067 

Succinic aldehyde 2.2783 1.9933 

Tos-Arg-CH2Cl  1.4667 

Tragopogonsaponin M 1.2068  

Tromethamine 2.8172 2.0467 

Table 5.3.3: Class Prediction Variable Importance in Prediction (VIP) Scores for 

Secondary Metabolomic Profiling Cohort (n=24). PLS-DA: Partial Least Squares 

Discriminant Analysis; RF: Random Forrest.  
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Figure 5.3.19: Significantly Altered Metabolites in Untargeted Analysis of ANCA- and 

LPS-Stimulated Monocytes in the Secondary Cohort. CD14+ monocytes were isolated 

from PBMCs of healthy controls by MACS separation (n=24). Cells were plated and 

stimulated @37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against 

MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-stimulated monocytes were analysed by LC-

MS and untargeted metabolomic analysis was completed. Features were compared to 

unstimulated cells using ANOVA with a Benjamini-Hochberg FDR correction. 83 

significantly altered features were annotated by ID Browser based on their accurate mass 

and isotopic distribution. Class prediction analysis was carried out by PLS-DA and Random 

Forrest analysis and entities with a VIP score >1 are plotted on the heatmap.  



   
 

217 
 

5.3.12 Pathway Analysis of Untargeted Metabolomics Data 
Pathway analysis for all 1,380 metabolites detected in the untargeted analysis was 

carried out using MetaboAnalyst (Version 5.0, https://www.metaboanalyst.ca/). 

Figure 5.3.20 shows annotated bubble plots for the most significantly altered 

metabolites in LPS- (A), MPO- (B), and PR3-stimulated monocytes (C). Inositol 

phosphate metabolism and phosphatidylinositol signalling were among the most 

significantly enriched pathways in LPS- and anti-MPO-treated cells. This effect was 

far more profound in the LPS-stimulated monocytes as indicated by the difference 

in scale of the X axis (Figure 5.3.20A). However, both of these pathways had a very 

low pathway coverage and thus a low pathway impact score. Glycolysis, 

gluconeogenesis, and the pentose phosphate pathway (PPP) were all significantly 

altered in anti-MPO group (Figure 5.3.20B). This indicates increased utilisation of 

glucose by early branches of the glycolysis pathway. There were no significantly 

altered pathways in the anti-PR3-treated cells (Figure 5.3.20C). Pathway analysis 

for the 83 significantly altered metabolites did not return any substantial results due 

to low pathway coverage and impact scores (data not shown). Here, implicated 

pathways included fatty acid elongation & degradation, valine, leucine and 

isoleucine degradation & biosynthesis, glycolysis/gluconeogenesis, and pyruvate 

metabolism. However, these are only tentative metabolite IDs [25], and we cannot 

be 100% certain that these annotations are correct. For instance, a number of di-

and tri-peptides IDs were assigned but we cannot determine the exact 

configuration/order of these peptide bonds. It is however promising that 20 of the 29 

metabolites in the synthetic standards mixture were identified in the untargeted 

analysis at the appropriate RTs. Additional analyses are needed to improve 

coverage of these metabolite pathways and confirm their important to ANCA- and 

LPS-activated inflammation. 

  

https://www.metaboanalyst.ca/
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Figure 5.3.20: Pathway Analysis of Significantly Altered Metabolites Identified in 

Untargeted Analysis. CD14+ monocytes were isolated from PBMCs of healthy controls by 

MACS separation (n=24). Cells were plated and stimulated @37°C for 4 hours with 5μg/ml 

monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and LPS-

stimulated monocytes were analysed by LC-MS and untargeted metabolomic analysis was 

completed. Peaks (n=1,380) were annotated using IDBrowser based on their accurate 

mass and isotopic distribution. Pathway analysis was performed on the online 

MetaboAnalyst platform (Version 5.0, https://www.metaboanalyst.ca/) comparing 

unstimulated cells to LPS- (A), MPO- (B), and PR3-activated monocytes (C). NB: scales 

are not consistent between panels. 
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5.3.13 Cytokine Production and Protein Content Differ between 
Primary and Secondary Cohorts 

One of the key functional readouts in ANCA- and LPS-stimulated monocytes was 

cytokine production (see Section 2.3), namely of IL-1β, IL-6, and TNF-α. All three 

cytokines were significantly increased in LPS-stimulated monocytes in both the 

Primary and Secondary cohorts (Figure 5.3.21). Anti-MPO stimulation also 

increased cytokine levels, though the effects were only significant in the Secondary 

cohort. Only TNF-α was significantly increased in anti-PR3 treated monocytes, and 

only in the Secondary cohort. CXCL10 was also measured but was not detectable 

in any of the treatment groups/cohorts (data not shown). Additionally, there were no 

differences in LDH release – a surrogate marker for cell death – from stimulated 

cells compared to unstimulated (data not shown). Considering both cohorts, we can 

conclude that LPS and anti-MPO increase cytokine production in primary 

monocytes, without affecting cell viability. 

 

There was a notable difference in TNF-α levels detected between the Primary and 

Secondary cohorts (Figure 5.3.21C). The Primary cohort (open shapes) had 

substantially lower TNF-α production than the Secondary cohort (closed shaped). 

This phenomenon is particularly evident in LPS-stimulated cells. Furthermore, the 

Secondary cohort had significantly higher protein levels in the metabolite fraction 

than the Primary cohort (Figure 5.3.21D). There were no significant differences in 

protein levels between treatment groups in either cohort, but inter-batch differences 

in protein levels accounted for 88.16% of total variation. PooledQC values for the 

respective cohorts are highlighted in purple. These results confirm that metabolomic 

profiling data from two cohorts should be considered as separate experiments. 

 

We examined the relationship of cytokine production and intracellular metabolite 

concentrations in the targeted analysis of the Secondary cohort. While a number of 

metabolites did appear to have a significant correlation with cytokine production, 

these associations were very minor. All Pearson R2 values were below 0.2 (data not 

shown). Furthermore, the majority of these significant correlations were driven by 

high pro-inflammatory cytokine production in the LPS-activated cells. From these 

data we can conclude that these specific metabolites likely do not drive pro-

inflammatory cytokine production in ANCA-stimulated cells.  
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Figure 5.3.21: Comparison of Cytokine Production and Protein Levels Across 

Metabolomic Profiling Experiments. CD14+ monocytes were isolated from the PBMCs 

of healthy controls by MACS separation. Cells were plated and stimulated for 4 hours with 

200ng/ml LPS, 5μg/ml monoclonal anti-MPO, or 5μg/ml monoclonal anti-PR3. 

Supernatants were removed and levels of IL-1β (A), IL-6 (B), and TNF-α (C) measured by 

ELISA. Results were analysed by Friedman's ANOVA and data are presented as the mean 

with standard error of the mean (SEM) (n=30). Primary profiling replicates (n=6) are open 

shapes and Secondary cohort samples (n=24) are filled. Following metabolite extraction 

residual protein levels in the metabolite fraction (MF) were measured by Pierce™ BCA 

Assay and reported as OD values at 595nm (D). PooledQC protein levels are marked with 

a dotted and dashed line for the primary and Secondary cohorts, respectively.  
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5.3.14 Monocyte MPO Surface Expression Reflects Intracellular 
Metabolite Concentrations. 

Previously we have shown a relationship between the percentage of MPO+CD14+ 

monocytes and subsequent IL-1β production upon ANCA stimulation (Figure 

3.3.14). In the Secondary metabolomic profiling cohort we revealed that there are 

three distinct groups of isolated monocytes which could be distinguished by the level 

of MPO expression (Figure 3.3.12B). We next determined if the degree of MPO 

expression was linked to intracellular metabolite concentration. Using the 

significantly altered metabolites identified in the targeted analysis of the Secondary 

cohort (see Figure 5.3.14), we found several significant relationships with MPO 

expression. These relationships were strongest for isoleucine (Figure 5.3.22D), 

leucine (Figure 5.3.22E), and phenylalanine (Figure 5.3.22G). This finding suggests 

that as well as being influenced the different treatments, some metabolite levels are 

also influenced by the degree of MPO surface expression. This finding should be 

further investigated and validated in AAV patients.



 
Figure 5.3.22: Relationship of MPO Surface Expression and Intracellular Metabolite Levels in Stimulated Monocytes. CD14+ monocytes were 

isolated from PBMCs of healthy controls by MACS separation (n=24). MPO expression was measured immediately after isolation by flow cytometry. 

Cells were plated and stimulated @37°C for 4 hours with 5μg/ml monoclonal antibody (mAb) directed against MPO, PR3, or 200ng/ml LPS. ANCA- and 

LPS-stimulated monocytes were analysed by LC-MS and targeted metabolomic analysis of 53 metabolites was completed. Monocytes were classified 

as “HIGH”, “MEDIUM”, or “LOW” based on their MPO surface expression and grouped accordingly separated further by treatment group. Intergroup 

comparisons were measured by2-way ANOVA with a Tukey adjustment for multiple comparisons.



5.4 Discussion 

5.4.1 Combining Results from both Metabolomic Profiling 
Experiments 

Here we have profiled the early metabolomic response of primary monocytes to LPS 

and ANCA stimulation using optimised LC-MS sample preparation protocols and 

analysis workflows (see Chapter 4). Metabolomic analyses were carried out in a 

Primary pilot cohort (n=6) and a larger Secondary cohort (n=24). Due to logistical 

issues, there were only 18 anti-PR3 replicates compared to 24 for other treatments. 

This may have impacted the statistical relevance of these cells as there were fewer 

degrees of freedom. As well as providing an initial insight into ANCA-induced 

changes in monocyte metabolism, the Primary analysis was used to conduct a 

power analysis to confirm required samples sizes (Figure 5.3.7). Studies carried out 

in mammalian cell lines typically use a very low number of replicates (n=3-15, [58]) 

as conditions can be tightly controlled throughout the experiment. The added 

complexity of primary human cells [47, 73-75] means a higher number of biological 

replicates are required to achieve consistent, reproducible results. Our power 

analyses determined this number was 24, and this was achieved in our subsequent 

validation experiment. This analysis also confirmed that measuring residual protein 

content in the metabolite fraction reduces the required number of biological 

replicates by controlling for technical and interpersonal variation.  

 

Despite our best optimisation efforts LC–MS-based metabolomics assays will 

always be susceptible to signal and sensitivity variations [381]. There was a 12-

month interval between LC-MS analysis of the Primary and Secondary cohorts. The 

use of a consistent synthetic standard mixture between both cohorts was intended 

to assess (and potentially correct for) inter-batch variance. The numbers of 

detectable metabolites in this synthetic standard mixture were consistent between 

both cohorts, with only minor differences in RTs and %CVs, and with the negative 

ionisation mode slightly outperforming the positive (Figure 5.3.8). The use of 

PooledQC samples is another effective strategy for monitoring and correcting 

within-batch effects. Both the Primary and Secondary cohorts contained all 4 

treatment groups for all biological replicates (n=24 and n=90 samples, respectively). 

The metabolomic differences between these PooledQCs – though derived from 

identical experimental systems – were too great to disregard (Figure 5.3.9). 

Regrettably these inconsistencies could not be rectified by baselining, data 
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transformation or LOESS correction. Further issues with the ESI+ meant that these 

data were excluded from analysis in the Secondary cohort (Figure 5.3.10), adding 

to the discordance between these experimental groups. Advanced batch correction 

algorithms can be used in some instances to account for instrument variation [99-

101, 106], however, further differences in cytokine production were evident between 

our cohorts (Figure 5.3.21). For these reasons the metabolomic profiling data from 

each cohort was analysed independently. Until appropriate validation experiments 

can be conceived and completed, we will consider the results from both cohorts as 

standalone works. 

 

Results of metabolomic profiling of the Primary cohort are reported for metabolites 

detected in both positive and negative ionisation modes. However, all significantly 

altered metabolites detected in the untargeted analysis of this sample set were 

features detected in the negative ionisation mode (Figure 5.3.4). Additional technical 

variation in the Secondary cohorts ESI+ LC-MS run caused significant variation in 

the later PooledQC samples (Figure 5.3.10). More metabolites were detected by 

ESI- and with lower %CVs in PooledQC samples. Nicotinamide adenine 

dinucleotide (NAD) and trimethylamine n-oxide (TMAO) not detected in the negative 

ionisation mode but did not show any significant differences between treatment 

groups in ESI+ (Figure 5.3.11). The isomers 1- and 3-methyl-L-histidine were only 

effectively separated in positive mode, and significantly less 3-methyl-L-histidine 

was detected compared to 1-methyl-L-histidine. Only 3-methyl-L-histidine is formed 

endogenously in humans, and 1-methyl-L-histidine is often used as a marker of 

meat intake [382]. Given the consistency of the ESI- run, only metabolites and 

features detected by this method are considered in the analysis of the Secondary 

profiling cohort. 

5.4.2 Results of Targeted Metabolomic Analyses 
All LC-MS methods developed/referenced in this work are untargeted. This method 

is used for biomarker discovery and hypothesis generation and allows relative 

quantitation by comparing metabolite differences from one group to another. 

Previous investigations of AAV metabolism had identified potential metabolite 

biomarkers [238, 261]. These findings were used to develop a synthetic standard 

mixture of metabolites of interest we were hoping to reliably identify in our analysis 

(see Section 2.9.2.2). As such we have adopted a targeted approach to our data 
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analysis by prioritising the specific metabolites in this mixture. Because these 

metabolites are measured with known RTs derived from synthetic standards, the 

IDs are stronger than features annotated in the untargeted analysis, which can only 

be considered tentative IDs [25]. 

 

Targeted analysis of the Primary cohort identified α-ketoglutarate (aKG), 

ethanolamine, and histidine were all significantly increased in stimulated cells. 

However, none of these metabolites were found to be significantly altered in the 

Secondary cohort (Figure 5.3.14). Here a total of eleven metabolites were 

significantly altered (see Table 5.3.2), most of which were amino acids. Both 

fumarate and aKG are TCA cycle metabolites which were enriched by anti-MPO 

(and LPS) stimulation. These metabolites have been reported to play a role in innate 

immune training in monocyte-lineage cells [20]. Glutaminolysis – the breakdown of 

glutamine into TCA cycle intermediates – facilitates epigenetic changes in trained 

cells. This increased aKG and fumarate can enhance pro-inflammatory cytokine 

production in monocytes and macrophages [20, 299]. The aKG/succinate ratio is 

important for macrophage polarisation: a high ratio promotes M2 differentiation, and 

a low ratio strengthens the pro-inflammatory M1 phenotype [22]. This ratio can also 

control gene expression in murine embryonic stem cells [383]. Although we did not 

note any significant differences in the aKG/succinate ratio between treatment 

groups, the LPS-treated cells had a slightly higher ratio and the anti-MPO group 

were slightly lower than unstimulated cells (data not shown). These findings suggest 

a link between aKG levels and pro-inflammatory cytokine expression in ANCA-

activated cells, one which demands further investigation.  

 

Leucine and isoleucine levels were significantly increased in ACNA-activated cells 

in the Secondary cohort (Figure 5.3.14). These isomers (along with valine) are 

branched chained amino acids (BCAAs). BCAAs are used as fuel sources to support 

the rapid proliferation and activation of immune cells [384]. In particular, leucine has 

been reported to regulate innate and adaptive immune responses and drive 

inflammation via mTOR [384]. Levels of both isomers also appeared to be linked to 

surface MPO expression (Figure 5.3.22). In contrast, Zhang et al. found substantial 

decreases in leucine and isoleucine in THP-1 cells which persisted into the resolving 

stage of inflammation [96]. This has been attributed to a systemic immunoparalysis 
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affecting cellular metabolism in acute sepsis [385]. Whether these metabolites have 

specific role in ANCA-induce inflammation or are fuelling standard cellular functions 

remains to be determined. 

 

The ANCA-induced alterations in 4-hydroxy-L-proline and serine found at 24h 

(Figure 3.3.7) were also seen at 4h in the Secondary cohort. Serine and 

phenylalanine were also tightly correlated with increases in ECAR (Figure 3.3.8), 

suggesting that glycolysis fuels the accumulation in these amino acids. Increased 

amino acid metabolism is essential for protein synthesis following immune cell 

activation. Amino acids have more recently been recognised for their roles in 

supporting cellular and organismal function via ATP generation, nucleotide 

synthesis, maintenance of redox balance and cellular communication [386, 387]. 

Metabolic requirements for immune cell subtypes vary based on their functions. To 

support metabolic reprogramming, immune cells utilise a range of amino acid 

receptors to selectively meet their energy demands [388]. In particular, SLC7A5 (the 

light chain of CD98) is particularly relevant in primary monocytes. Leucine influx via 

SLC7A5 contributes to metabolic reprogramming and IL-1β production [389]. This 

marker is also upregulated on monocytes of RA patients where it correlated with 

disease severity markers. The increase in amino acid anabolism seen in ANCA-

stimulated monocytes may also be mediated via SLC7A5. Targeting amino acid 

transport has been suggested as a novel therapy for autoimmune diseases [390]. 

Future studies should investigate metabolic markers on immune cell subtypes in 

AAV patients to confirm if it is a viable treatment target.  

5.4.3 Results of Untargeted Metabolomic Analyses 
In the untargeted analysis similar feature numbers were detected in the Primary 

(n=1,515 ESI- only after blank removal) and Secondary cohorts (n=1,380). These 

features were assigned tentative IDs by matching parent ion exact mass and 

isotopic patterns with the Agilent METLIN Metabolomics Database and Library [25, 

68]. Of the significantly altered metabolites that were assigned metabolite IDs, many 

of these were lipids and lipid-like molecules (Figures 5.3.5 & 5.3.19). This was 

without optimising the LC-MS method or sample preparation procedure for detecting 

lipid species and speaks to the strength of HILIC chromatography. Many of these 

compounds eluted in the void volume, and the mean/median RT of the compounds 

displayed in Figure 5.3.5 was 1.63/0.99mins. However, without further 
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fragmentation of these lipid entities they cannot be fully annotated. Developing 

targeted assays for these purposes – while feasible – is currently beyond the scope 

of this work. More polar lipids such as phospholipids (PE, PG, PC), lyso-PC and DG 

can be detected by HILIC chromatography [345]. Indeed, the synthetic standard 

ethanolamine was detected in ESI+ at 3.12 and 3.21 mins in the primary and 

secondary PooledQC samples, and was significantly upregulated by MPO-

stimulation in the former (Figure 5.3.11). Our optimised methanol extraction protocol 

would also be suitable for analysis using a C18 column and the appropriate mobile 

phases, which may allow detection of additional lipid species. In subsequent 

experiments we will seek to verify the contributions of these metabolites to ANCA-

induced inflammation.  

 

Despite these uncertainties, lipid metabolism has been established as an 

immunomodulatory process in monocytes. The most significantly altered metabolite 

in the untargeted analysis of the Primary cohort was annotated as palmitic 

(hexadecenoic) acid and was increased in both anti-MPO- and anti-PR3-stimulated 

cells (Figure 5.3.6). Palmitic acid is the most common saturated fatty acid in the 

human body, accounting for 20–30% of total fatty acids in membrane phospholipids 

and adipose triacylglycerols [391]. Palmitate is a 16-carbon saturated fatty acid 

produced via the fatty acid synthesis pathway and is the precursor to many other 

longer fatty acids [391, 392]. Increased synthesis by ANCA activation (Figure 5.3.6) 

at this early timepoint may precede production of additional fatty acids species with 

greater functional relevance. Indeed, additional fatty acid metabolites were 

implicated in the untargeted analysis of the Primary cohort, including 10-methyl-

hexadecanoic acid and (+)-isostearic acid (Figure 5.3.6). These metabolites (and 

others from closely related pathways [393]) have direct functional relevance to 

monocytes. Palmitate can promote atherogenesis, increase pro-inflammatory 

cytokine production, and enhance monocyte migration and endothelial binding [394-

396]. It can modulate innate immunity via regulation of PRR activation to coordinate 

activity of infiltrating cells at sites of inflammation [397]. Metabolic memory by 

palmitate overload can induce insulin sensitivity, inducing further metabolic (and 

inflammatory) dysfunction [398]. In a similar vein, cholesterol synthesis – in 

particular mevalonate production – is also essential for innate immune memory in 

monocytes [20, 21].  
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Time (and dose) dependent effects of LPS stimulation on cytokine production, OCR, 

glycolysis, and fatty acid metabolism have been reported [97]. Enrichment of a 

similar variety of lipid species seen in our metabolomic profiling cohorts has been 

reported in LPS-activated primary monocytes [97, 302]. Lipid droplets also 

accumulate over time in LPS-activated cells and are used as a measure of 

(phospho-) lipid synthesis [85]. Macrophages enhance fatty acid uptake into lipid 

droplets after LPS stimulation, while simultaneously decreasing lipolysis and fatty 

acid oxidation [399], however these lipid droplets were primarily triacylglycerols 

(TAG), a lipid species much better detected by ESI+ [400]. α-linoleic acid was 

another lipid annotation identified in the Primary untargeted analysis. This is an 

essential omega-3 polyunsaturated fatty acid (PUFA) and was significantly 

upregulated in anti-MPO activated cells (p=0.0110) with a trend toward increase 

(p=0.0663) with anti-PR3 stimulation. PUFAs were also increased after LPS 

stimulation of THP-1 monocytes [96]. PUFAs can feed into any number of diverse 

metabolic pathways, and further work is needed to correctly classify them and 

determine their role in AAV. 

 

Lipid metabolism has been implicated in monocyte dysfunction in other conditions 

as well. Fatty acid oxidation was essential for CCL20 production in RA monocytes 

[86], and dysregulation of monocyte subsets in human obesity has been correlated 

with lipid metabolism [401]. Most recently SARS-CoV-2 exposure promoted lipid 

droplet accumulation and upregulation of lipid metabolism targets in monocytes, 

which promoted production of pro-inflammatory cytokines, viral replication, and cell 

death [402]. Immune dysregulation in aging is characterized by persistent 

inflammatory responses; termed inflammaging. Aged monocytes have 

dysfunctional TLR signalling, cytokine production, and surface receptor expression 

[403-405]. Lipid metabolism has been suggested as a pathogenic contributor to 

inflammaging in monocytes. Plasma fatty acid levels increase with age and correlate 

with blood cytokine levels [394]. Saturated fatty acids primed monocytes to induce 

higher cytokine response to LPS stimulation, and controlled macrophage 

polarization. These effects were mediated in part by peroxisome proliferator-

activated receptor γ (PPAR-γ) [394]. PPAR-γ activation reduced cytokine production 

in monocytes [406] and expression was decreased by LPS stimulation [97]. The 
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effect of this transcription factor in ANCA-induced inflammation should be a focus 

of future work. 

 

Previous work from our group validated urinary myo-inositol as a urinary biomarker 

of AAV relapse [261]. This metabolite was included in the synthetic standard mix for 

this reason but was also picked up in the untargeted analysis with several metabolic 

precursors. Lower levels of bi- and mono-phospho-myo-inositol were detected than 

myo-inositol, indicating an accumulation of myo-inositol upon ANCA-stimulation. 

While myo-inositol levels were not significantly different between treatment groups, 

inositol phosphate metabolism and phosphatidylinositol signalling among the most 

significantly enriched pathways in the pathway analysis (Figure 5.3.20), and bi- and 

mono-phospho-myo-inositol had high-ranking VIP scores in the PLS-DA class 

prediction analysis (Figure 5.3.18). This was particularly relevant for anti-MPO 

activated cells. Indeed, when the anti-MPO and anti-PR3 treatment groups were 

compared by volcano plot analysis, D-myo-Inositol 1,3-diphosphate and 1-(sn-

Glycero-3-phospho)-1D-myo-inositol were among the 79 differentiating metabolites 

IDs with scores of 80.15 and 96.58, respectively (data not shown). On a cellular 

level, phosphatidylinositol species acutely generated by activated macrophages 

regulate innate immune responses [407]. ANCA treatment reduced inositol 

signalling in neutrophils but increased it in endothelial cells [408, 409]. There are a 

number of different metabolic pathways that can drive myo-inositol accumulation 

(Figure 5.4.1). Myo-inositol can also be obtained from dietary sources, where it can 

affect monocyte differentiation in the gut [202]. The various mechanisms of myo-

inositol production should be targeted to assess the effects of their metabolic 

manipulation on cytokine production. 

 

Class prediction analyses were also carried out in the Secondary cohort to 

determine the optimal metabolic discriminators of cellular activation (Table 5.3.3). 

Among the top ranked metabolites were succinic aldehyde, itaconic acid, 

glyerophosphoinositol, PI(40:7), and tromethamine. The precise identities of the 

latter three could be disputed, however the relationship of succinate and itaconate 

in LPS-mediated macrophage immunometabolism has been well established. 

Succinic (semi-)aldhehyde is a precursor of succinate, and itaconate is formed from 

aconitate in the TCA cycle. Secondary to their roles in energy generation these 
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metabolites are important for pro- and anti-inflammatory responses in macrophages 

[321]. Itaconate was first recognised as an anti-microbial metabolite, but has 

recently been shown to decrease production of proinflammatory mediators in LPS-

treated macrophages via Nrf2 [365, 410, 411]. Itaconate was highly increased in 

LPS-treated cells after 4h stimulation, consistent with other published data at 24h 

(Figure 5.3.19)[97, 302]. No differences were noted in either MPO- or PR3-ANCA-

activated monocytes. Succinate alone does not appear to be important for 

inflammatory or metabolic response in ANCA-activated monocytes, but its 

relationship to other metabolites is intriguing, and deserves further study.  

 

 

Figure 5.4.1: Different Routes of myo-Inositol Production and Import in Human Cells. 
Myo-inositol can be produced directly from glycolysis, by dephosphorylation reactions, or 
imported directly into the cell. G6P: Glucose 6-Phosphate; ISYNA1: myo-inositol 1-
phosphate synthase; IMPA1: myo-inositol 1(or 3)-monophosphatase; MTM1: myotubularin; 
PI Cycle: Phosphoinositol Cycle 
 

5.4.4 Functional Readouts – Cytokines & MPO Expression 
Despite differences between metabolomic profiling cohorts, we confirm that anti-

MPO stimulation increases pro-inflammatory cytokine production in primary 

monocytes. The intermediate monocyte subset are the primary producers of pro-

inflammatory cytokines in response to anti-MPO, but do not react to anti-PR3 [203]. 

Our analysis did not find any significant correlation with intracellular metabolite 

levels and cytokine production. Where links between metabolic activity and cytokine 

production have been reported these studies have used specific metabolic inhibitors 

to uncover these relationships [97, 124, 302]. Future validation experiments should 

measure cytokine production as a primary functional readout for ANCA-activated 
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cells. Additional flow cytometry experiments were carried out in the Secondary 

profiling cohort to assess surface MPO expression (see Figure 5.2.1 and 3.3.12B). 

We have reported that intracellular levels of certain metabolites are linked to MPO 

surface expression (Figure 5.3.22). This novel finding is the first functional link 

between metabolite levels and AAV physiology reported in primary monocytes. Our 

experiments were carried out in monocytes isolated by CD14+ isolation. This would 

predominantly preserve the classical monocyte subset above all others. Given the 

differing functions of the monocyte subsets, differences in energy utilisation are to 

be expected. Indeed, metabolic distinctions between monocyte subsets have been 

reported, with classical monocytes favouring glycolysis and intermediate/non-

classical opting for oxidative mitochondrial energy production [412]. The 

intermediate subset also expresses more surface MPO than classical and non-

classical monocytes [203]. Further validation experiments should attempt to tease 

out the role of these specific cells in ANCA-induced inflammation. 

 
The monocyte response to LPS stimulation is well established, albeit at the later 

timepoint of 24h. Similar to their macrophage counterparts, monocytes activated by 

LPS adopt Warburg metabolism and favour glycolysis for their energy production 

[97]. ANCA-activated monocytes (particularly anti-MPO) increase both glycolysis 

(ECAR) and OXPHOS (OCR), a phenomenon usually reserved for stimulation with 

complex whole micro-organisms [97, 124, 302]. At earlier timepoints broad 

decreases in metabolite levels after LPS-stimulation have been reported [85, 96]. 

Here we have identified novel early metabolic changes in LPS-activated cells, with 

a more profound (and expected) inflammatory response to LPS stimulation in our 

Secondary profiling cohort (Figure 5.3.21). This was accompanied by decreases in 

metabolites such as aspartic acid (confirmed by Raulien et al. [85]) and β-alanine 

(Figure 5.3.14). As with the alanine/sarcosine isomers, leucine and isoleucine were 

previously distinguished by running separate, individual synthetic standards for both 

isomers using the optimised LC-MS method, confirming that leucine eluted at the 

earlier timepoint. These early changes in the monocyte metabolome that precede 

inflammatory reactions highlight the metabolic flexibility of these cells. Additional 

metabolomic investigations at this early timepoint will be necessary to confirm these 

findings.  
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Chapter 6: Discussion 
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6.1 Optimised LC-MS Methods for Metabolomic Analysis 
of Primary Immune Cells 

In this work we have described an optimised LC-MS workflow for analysis of primary 

immune cells using healthy monocytes. Standardized protocols for primary cell 

metabolite and lipid extraction for LC-MS analysis do not currently exist in the 

literature [59]. There have been limited reports of cellular metabolomic 

investigations in primary cells, and even fewer in monocytes. Those who have 

explored the monocyte metabolome have not sufficiently detailed their sample 

preparation and LC-MS analysis methods. In some cases these investigations have 

been outsourced to collaborators or commercial entities (see Section 1.2) who may 

not necessarily optimise for the sample material or application at hand. This 

presented an opportunity for us to define optimum LC-MS conditions for 

metabolomic profiling of primary monocytes. Many cellular metabolomics 

optimisations have been carried out in mammalian cell lines [58, 59, 61, 62], which 

are metabolically distinct from primary human cells [413]. Furthermore, many of 

these cell lines are cancer-derived and have distinct metabolic requirements from 

healthy cells. Our methods were optimised in non-adherent primary immune cells, 

and with minor modifications can be valid and adaptable to other cell types. This 

LC-MS method used here has been applied to other primary cells and cell lines 

[364, 414]. 

 

Neutrophils have an established role in AAV pathogenesis, but immunometabolic 

investigations in these cells to date have been limited. Metabolic reprograming in 

these cells is only beginning to be recognised to impact their function [415-417]. 

Similarly, B cells are the source of ANCA and their unique metabolism links closely 

to their diverse functions. Like neutrophils they contain very few mitochondria, and 

activated B cells have increased glucose uptake and glycolysis [315, 418] which 

feed into the ribonucleotide biosynthesis pathway to support sustained production 

of antibodies [419]. Autoreactive B cells have prolonged and sustained energy 

demands which can deplete ATP and cause cell stress, worsening autoimmune 

diseases [418, 420]. T cells on the other hand have long been recognised as 

metabolically distinct subtypes [421-423], and are attractive targets for metabolic 

therapies in autoimmune disease [424, 425]. Disruption of T cell subsets and their 

respective cytokine profiles have been reported in AAV [185], with persistent Th cell 

activation (particularly Th17) and impaired suppressive functioning of regulatory T 
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cells (Tregs). The metabolism of these (and other) immune cells and how it relates 

to their function in AAV pathogenesis should be a focus of future investigations, and 

should incorporate the optimised protocols described in this work. Further, how they 

link to systemic metabolic changes and clinical characteristics should be explored 

[260]. We would encourage collaborators and research groups to employ the 

optimised sample preparation protocols developed here to other cell (and sample) 

types in AAV. 

 

Given that our sample preparation methods have been optimised for polar 

metabolite detection, it is intriguing that several of the significantly altered 

metabolites in ANCA-stimulated monocytes were lipid species (Figures 5.3.6 & 

5.3.19). The benefit of this optimisation protocol is that the non-polar, lipid fraction 

is preserved and can be extracted from the lysate for further analysis [426, 427]. 

This will improve metabolome coverage allow further characterisation of additional 

lipid species too hydrophobic to be detected by HILIC. DNA, RNA, and certain 

proteins may also be maintained for further analyses [295, 296]. These materials 

can be analysed to validate the findings of this work and potentially uncover new 

biomarkers for further investigation. 

6.2 Attempting to Combine Metabolomic and Functional 
Readouts 

Advancements in LC-MS technologies have expanded its capabilities beyond 

traditional untargeted metabolomic profiling [428]. MS imaging and single cell 

metabolomics have further advanced the capabilities of LC-MS for metabolomic 

profiling [429-432]. However, these methods require their own protocol optimisation. 

LC-MS metabolomics measures the direct output of metabolism – i.e. metabolites – 

but the strength of this method increases exponentially when combined with 

additional functional readouts [26]. The utility of these advanced MS methods as a 

compliment to the metabolomic profiling described here could be explored in future 

investigations. 

 

Some researchers suggest using whole blood exclusively to prevent sample 

preparation- related variation in immunologic investigations [339]. A newly 

developed flow cytometry assay monitors rapid changes in protein translation upon 

using various inhibitors to allow complex metabolic profiling even with low cell 
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numbers [433]. This can be useful for revealing metabolic capacities and 

dependencies in diverse populations but cannot give more detailed info about 

specific metabolites that LC-MS provides. Methods have advanced to be able to 

profile the metabolome in low cell numbers [352], but isolation is still required to 

measure the specific metabolic phenotype of the cells of interest. We have seen in 

our work that the process of cell isolation appears to affect cell surface markers on 

monocytes (see Section 3.4.2). Cytokine production is also sensitive to the effects 

of monocytes isolation [434]. Here we have prioritised cytokine production as the 

key functional readout in parallel experiments using IL-1β as our key measure of 

monocyte activation. It is possible that the process of monocyte isolation primes the 

cells to respond to anti-MPO alone. However, monocytes are unique in that they 

can produce IL-1β without a priming stimulus in response to LPS [121, 435]. The 

phenotypic modification of cells during isolation seems to be unavoidable. Even 

sorting cells by flow cytometry can alter their metabolome [293]. These concerns 

cannot be addressed in the current work, but should be taken into consideration 

when planning future experiments. 

 

Many researchers’ first foray into immunometabolism involves extracellular flux 

analysis using the Seahorse [300]. Indeed our preliminary work found both 

glycolysis and OXPHOS to be increased by ANCA stimulation, particularly anti-MPO 

[238]. This is an excellent litmus test for investigating the baseline metabolic wiring 

of cellular metabolism, but cannot give more detailed info about the metabolic 

pathways being fed from the major nodes of glycolysis and OXPHOS [26]. Our 

attempts to utilise cells stimulated in a Seahorse analyser for subsequent 

metabolomic profiling were unsuccessful (see Section 3.3.10). However, parallel 

analysis of Seahorse results with LC-MS profiling did yield some interesting findings. 

A number of amino acids correlated with increased rates of glycolysis (Figure 3.3.8), 

suggesting their anabolism is fuelled by the breakdown of glucose. Seahorse 

analysis has been used to confirm the shift to Warburg metabolism in LPS-activated 

primary monocytes. These studies have also investigated phagocytosis, 

transcriptomics/qPCR, cell migration, ROS production, and surface marker 

expression [85, 86, 97, 124, 302] in parallel experiments distinct from the primary 

metabolomic profiling.  
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Contrary to Warburg metabolism, primary monocytes increase rates of both 

OXPHOS and glycolysis upon ANCA stimulation [238]. As such the metabolic 

changes in these cells may not be entirely applicable to their macrophage 

counterparts. Indeed, the activation of both glycolysis in OXPHOS seen with LPS 

and anti-MPO stimulation is more similar to activated T cells than either M1 or M2 

macrophages [14, 436]. Future works should further investigate the monocyte-T cell 

crosstalk in the circulation and at disease sites. T cells have established and diverse 

metabolic requirements, which have not been elucidated in AAV. Inhibition of CD28 

suppressed murine large-vessel vasculitis by disrupting T-cell metabolic fitness 

[246], and expansion of CD4+CD28- cells was recently reported in AAV patients 

[Error! Hyperlink reference not valid.]. Dekkema et al. [438] recently identified a 

range of differentially expressed miRNAs in Tregs of GPA patients, several of which 

have been shown to play a role in metabolism of these cells [439].  

 

AAV monocytes increase T cell activation and proliferation [230]. These cells (and 

neutrophils) form the core of granulomas where they can orchestrate systemic T cell 

responses [187]. Activated monocytes preferentially induce infiltrating CD4+ T cells 

to produce IL-17 and promote Th17 differentiation [440]. These cells are 

subsequently rereleased into the circulation and are among the main pathogenic 

drivers in AAV [187, 441]. Within AAV granulomas T cells and 

monocytes/macrophages drive repeated destructive cycles of cell recruitment and 

activation [441]. Given their overlapping metabolic demands this creates a unique 

immune and metabolic microenvironment. The monocyte-T cell interaction in AAV 

should be a focus of future research, particularly the metabolic crosstalk and nutrient 

competition between these populations. 

6.3 Cell Priming 
A number of compounds are used in the ANCA literature to “prime” immune cells 

prior to stimulation. In neutrophils, pre-activation/priming activates the p38 and ERK 

Mitogen Activated Protein (MAP) kinase pathways, triggering MPO/PR3 

translocation to the plasma membrane [212-217]. This allows external ANCA 

binding and subsequent cellular activation [173]. Given that ANCA titres do not 

necessarily correlate with disease severity [209], priming events which facilitate 

ANCA binding and cellular activation may be crucial for disease development.  
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Despite its routine use in neutrophils, TNF-α does not appear to be an appropriate 

priming factor for primary monocytes (Figures 3.3.4 & 3.3.5). IL-1β production was 

lower in monocytes primed with TNF-α even after subsequent ANCA stimulation. 

LPS was much more effective in inducing pro-inflammatory responses in these cells. 

Use of LPS as an ANCA-primer for monocytes has not been widely reported. Hattar 

et al. found co-stimulation of monocytes with ANCA and LPS increased IL-6, IL-8, 

and TNF-α production [226]. In cases of bacterial infection or disease [210, 211], 

systemic LPS could potentially trigger priming in vivo directly by PAMP stimulation, 

or via the resulting production of pro-inflammatory cytokines [173, 182, 184]. Animal 

models have used it at the time of ANCA-transfer to induce a more severe disease 

phenotype [442]. AAV patient monocytes also express more CD14, making them 

more susceptible to activation from bacterial antigens such as LPS [223] and 

potentially exacerbating ANCA flares. LPS also has established effects on 

monocyte metabolism, which may facilitate enhances pro-inflammatory activity by 

subsequent ANCA stimulation. Despite the synergistic effects of LPS and ANCA on 

monocytes activation, we opted not to use it as a priming agent in these works as 

the metabolic changes induced by LPS could mask/overtake and ANCA-specific 

effects. 

 

We have previously proposed a role for priming in the metabolic activation of cells 

[186]. Both TNF-α and LPS can alter metabolic phenotypes of immune cells. 

Hypoxia-inducible factor (HIF)-1α is induced by TNF-α to promote expression of 

lactate dehydrogenase (LDH) and pyruvate dehydrogenase kinase (PDK) [315], 

supporting increased glycolysis in activated immune cells [316, 317]. TNF-α 

stimulation can alter glucose, lipid, and adipocytokine levels in arthritic murine joints 

[318], and is also crucial for insulin resistance development in obese mice [319]. 

Clinically relevant endotoxaemia triggers insulin resistance and cytokine release 

[443-445]. In vitro concentrations of LPS have differing effects on IL-1β production 

and cellular metabolism in monocytes [97]. It’s unlikely that a single priming factor 

is responsible for cellular activation in ANCA, and a milieu of inflammatory and 

metabolic compounds are bound to contribute. The relationship between ANCA and 

priming agents does warrant further study though, and LPS priming alone should be 

incorporated as a control in future works. 
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6.3.1 Fatty Acids as Primers  
Monocyte-lineage cells in RA and other autoimmune conditions adopt a 

“hypermetabolic” phenotype which drives inflammation [86, 147, 151, 422]. Specific 

lipid molecules may promote this primed phenotype at a cellular level. Oxidized 

phospholipids reprogrammed macrophages away from Warburg metabolism to 

simultaneously engage glycolysis and OXPHOS to enhance IL-1β production [446]. 

These molecules can function as TLR4 antagonists and are increased in the 

presence of MPO-ANCA [197]. The NLRP3 inflammasome can sense metabolites 

such as palmitate and cholesterol to drive IL-1β by macrophages [397]. A recent 

investigation of community-acquired pneumonia found that a majority of the immune 

tolerance phenotype in monocytes can be accounted for by coordinated shifts in 

cholesterol biosynthesis gene expression and its relationship to DNA methylation 

levels and cytokine production [447]. This suggests that dysfunctional lipid 

metabolism could create a pro-inflammatory environment for pre-clinical AAV. 

 

Activated monocytes use the lipid chemoattractant sphingosine 1-phosphate (S1P) 

to coordinate T cell migration from lymph nodes [448]. S1P can promote disruption 

of endothelial barrier integrity in the presence of MPO-ANCA [449, 450], and 

systemic levels increase during active disease where they correlate with disease 

activity [451]. However, S1P was not identified in the untargeted analyses of our 

sample cohorts. Not all lipid species are pro-inflammatory, however. Some lipid 

mediators can suppress cytokine production in TNF-α primed macrophages [314]. 

As we cannot 100% confirm the identity of the lipid compounds identified in the 

untargeted analyses, we cannot validate their influence on ANCA-induced 

inflammation. It is possible however that a lipid-rich microenvironment primes 

monocytes to respond to ANCA. 

6.4 Metabolomic Profiling 
There were disparities in metabolites implicated in the Primary and Secondary 

cohorts. The primary cohort experiment is too underpowered to draw meaningful 

conclusions alone. Use of batch correction techniques may allow us to combine the 

results of these two cohorts in future analyses [99-101, 106]. Below we have 

discussed some of the metabolic alterations we have discovered in ANCA-activated 

monocytes, many of which have been shown to induce epigenetic changes in 

monocyte-derived cells. 
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6.4.1 Serine 
Serine has been implicated multiple times in various analyses within this work. In 

two pilot experiments we found intracellular serine to be enriched by ANCA 

stimulation after 24 hours (Figure 3.3.7), and also to correlate with increased 

glycolysis measured by Seahorse at 4 hours (Figure 3.3.8). We hypothesised that 

the increased glycolysis was feeding serine synthesis via the de novo serine 

synthesis pathway (Figure 6.4.1). Serine can be produced by directly from glycolysis 

by converting 3-phosphoglycerate (3PG) to 3-phosphohydroxypyruvate (3PHP) via 

3-phosphoglycerate dehydrogenase (PHGDH). Inhibiting this process temporarily 

limited IL-1β production in activated monocytes (Figure 3.3.9). Serine synthesis is 

essential for IL-1β (and TNF-α) production in murine macrophages [335], and this 

appears to be the case in human monocytes too. In cancer cells serine synthesis is 

essential to support proliferation via nucleotide synthesis and replenishment of the 

one-carbon pool [331-333]. Investigating the subsequent breakdown and utilisation 

of serine (perhaps by fluxomics) may be useful for determining its role in ANCA-

induced inflammation. In macrophages the one-carbon pool facilitates epigenetic 

changes during M1 differentiation, fed in part by serine synthesis [387, 452]. Further 

confirming the compensatory mechanisms used by monocytes to overcome 

PHGDH inhibition – by increased serine import or synthesis via alternative pathways 

– may aid in this. 

 

Figure 6.4.1: Serine Synthesis via the de novo Synthesis Pathway. Inhibition of 3-

phosphoglycerate dehydrogenase (PHGDH) by CBR-5884 can limit short-term IL-1β 

production in activated monocytes. 
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6.4.2 Myo-inositol 
Myo-inositol was previously identified as a urinary biomarker of AAV relapse [261]. 

Specifically, the myo-inositol:citrate ratio differentiated AAV from other kidney 

conditions and returned to normal levels following successful treatment. Monocyte-

lineage cells are the most abundant infiltrates in early glomerular lesions [193], and 

this increase in myo-inositol metabolism in ANCA-activated monocytes may explain 

the increase urine levels in renal-disease. Myo-inositol can be synthesised de novo 

from glucose or directly imported into cells by a variety of transporters (HMIT 

[SLC2A13], SMIT1 [SLC5A3], or SMIT2 [SLC5A11])[453]. While not significantly 

altered in between treatment groups in the targeted analysis, precursor metabolites 

of myo-inositol (and other inositols) were identified in the untargeted analysis and 

were implicated in the pathway (Figure 5.3.20) and class prediction analyses (Figure 

5.3.18). Myo-inositol metabolism appears to be involved in monocyte activation by 

anti-MPO.  

6.4.3 Lipid Metabolism 
The hypermetabolic phenotype described in RA [86, 147, 151, 422] can be 

influenced at the systemic level by nutrient exposure and availability. Cholesterol 

and other fatty acids are known to create a pro-inflammatory environment in 

atherosclerosis [454, 455], in part by increased FA uptake [155] promoting a pro-

inflammatory phenotype. The systemic changes in fatty acid profile that accompany 

healthy ageing [394] may be driving systemic inflammation to prime circulating 

monocytes to react to ANCA. Increased PUFA and other lipid metabolites have been 

reported in AAV patients [258, 456], however one study found that serum lipid levels 

actually only increase during AAV remission [457]. This study also found this effect 

to be more pronounced in PR3+ AAV. Lipid lowering medications such as statins 

may provide anti-inflammatory effects and could be an easily integrated into AAV 

treatment protocols. Indeed statin use is associated with reduced relapse risk [273] 

and can inhibit respiratory burst in ANCA-stimulated neutrophils in vitro [216]. 

Further to its cholesterol-lowering effects, statin use can inhibit TLR4 signalling in 

LPS-activated monocytes to limit inflammation [156, 158], meaning its protective 

effects may be specifically relevant to monocytes. We did observe increases in 

several lipid species in ANCA stimulated cells (Figures 5.3.5, 5.3.6, & 5.3.19). The 

use of statins as part of the AAV treatment protocol has not been thoroughly 
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investigated but may improve patient outcomes by inhibiting pathogenic metabolism 

in inflammatory cells. 

6.5 Future Work 
This untargeted metabolomic profiling has been hypothesis-generating, and the 

metabolites implicated here must be further examined to confirm their roles in 

ANCA-induced inflammation. There are a number of ways to achieve this [19, 26] 

but given the availability of linked material we will first examine changes in gene 

expression by qPCR before examining the effects of various metabolic inhibitors on 

the ANCA response. We will specifically target metabolites significantly altered in 

the metabolomic profiling experiments (see Sections 5.4.2 & 5.4.3) and implicated 

in the pathway analysis (Figure 5.3.20). We will also complete more comprehensive 

inhibition experiments of using a broad spectrum of lipid metabolism inhibitors á la 

Chen et al. [458]. The optimised sample preparation protocol also preserves cell 

lysates for protein analysis by Western blot. Here we would target the master 

metabolic regulators – mTOR, AMPK, PPARγs, and sirtuins – to see how ANCA 

stimulation effects their activation at this early timepoint. Additional validation 

experiments using confocal microscopy to stain monocyte lipid droplets [402, 459, 

460] would also aid in validating the role of lipid metabolism in these cells. Many of 

the implicated metabolites have established effects on epigenetic regulation. We 

would like to collaborate with other expert research groups to confirm these findings 

and would seek expert opinions on how to go about this. 

 

An early LC-MS profiling experiment on monocyte supernatants extracted with 1:1 

80% MeOH did not detect any changes in the exometabolome (data not shown). 

Despite not optimising our extraction protocols for spent media, these changes may 

have also been too subtle to detect at this early timepoint. Changes in nutrient 

transport may have begun to enrich intracellular concentrations of required 

metabolites. We have reported alterations in lipid, amino acid, and glucose 

metabolism in this work and will examine changes in corresponding nutrient 

transporters such as SLC7A5 (amino acid transport), ABCA1, CD36, GPR120 (lipid 

transport) SLC2A13, SLC5A3, and SLC5A11 (myo-inositol transport). We will first 

examine potential changes in expression patterns of these receptors, before 

validating our findings in a suitable patient cohort. 
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The effects of trained immunity by BCG include an increase in both glycolysis and 

OXPHOS – similar to that of ANCA. Innate immune training protocols occur over 

several days and track the monocyte lifecycle from circulation to macrophage 

differentiation. These experiments have similarities to our monocyte priming work 

(see Figure 3.3.5), albeit more long-term. Metabolic stimuli can strongly influence 

macrophage polarisation [14, 461-463]. Whether ANCA can further manipulate this 

polarisation and differentiation has not been fully investigated. Initial findings 

suggest MPO-ANCA increase monocyte survival and differentiation and have an 

altered inflammatory phenotype [197]. We would like to adopt innate immune 

training protocols to further investigate this phenomenon. The use of LPS as a 

priming agent should also be investigated in this context to confirm the metabolic 

effects involved in enhancing ANCA responses in these cells. The goal here is to 

determine if the hypermetabolic phenotype seen in other autoimmune conditions 

drives inflammation in AAV monocytes. 

 

Another piece of this work which could not be expanded upon appropriately was the 

effect of MPO inhibition (see Figure 3.3.11). This approach has been validated as a 

potential therapy in a rodent AAV model [304]. MPO binds more rapidly to 

pathogenic MPO antibodies in the presence of hypochlorite acid, the main product 

of its catalytic reaction [337]. The MPO-catalyzing reaction also increases the 

antigenicity of MPO, indicating that the activity of MPO itself may drive inflammation 

in MPO-AAV. Additional metabolic effects of MPO enzyme activity may drive 

inflammation in AAV. The non-glycolytic acidification seen in ANCA-stimulated 

monocytes [238] may be driven by increased HOCl production by MPO. 

Macrophage exposure to MPO-derived HOSCN alters mitochondrial metabolism 

and increases cytokine production [464, 465]. The effects of MPO activity/inhibition 

on real time cellular metabolism can be easily measured by Seahorse. This would 

confirm if the non-glycolytic acidification observed is a result of increased MPO 

activity, or another compound as lactate [466] [467]. Further elucidating the role of 

MPO in inflammasome activation (see Figure 3.3.5) should also feature in these 

investigations. 

 

The Rare Kidney Disease (RKD) biobank contains longitudinal biospecimens for 

over 800 Irish AAV patients. The availability of linked clinical data would allow us to 
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monitor patient relapse and further investigate the influence of statin on relapse 

seen in the Japanese cohort [273]. Serum samples are also obtained during routine 

clinic visits, and could be profiled to confirm the metabolic changes observed in 

active disease by Geetha et al. [260]. Given that monocytes are circulating cells 

their relationship with the systemic blood macroenvironment is an important source 

of nutrients which can change rapidly during disease/infection. Recent work 

combining cellular and serum metabolomics identified systemic amino acid 

deprivation as a mechanism of monocyte hypoactivation in a variant of psoriasis 

[468]. Improvements in sample workflows have allowed the routine collection of 

PBMCs by the RKD Biobank. This would facilitate the nutrient transporter study 

described above. This invaluable resource should be better utilised to profile the 

metabolic phenotype of systemic and cellular AAV. 

 

The metabolic alterations in ANCA-stimulated monocytes are summarised in Figure 

6.5.1. This untargeted metabolomic profiling has been hypothesis-generating. We 

hope that the data presented here will inspire other research groups to pursue these 

links of investigation through their own lens to confirm how metabolism affects 

ANCA-induced inflammation and disease pathogenesis. 
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6.6 Final Remarks 
1. Metabolomic analysis of immune cells requires careful consideration. 

Sample preparation protocols, analysis pipelines, and parallel experimental 

readouts should all be optimised to appropriately address the experimental 

question. The methods described in this work are broadly applicable to other 

primary, non-adherent immune cells and should be used to profile cellular 

metabolism in AVV. We have also validated metabolite fraction BCA as a 

suitable and effective normalisation strategy for cellular metabolomics. 

2. Lipid metabolism links priming and ANCA responses in primary 

monocytes. A lipid-rich environment creates a pro-inflammatory 

environment which acts as a primer for ANCA-induced metabolism. Limiting 

cholesterol metabolism with statins may mitigate monocyte activation and the 

subsequent inflammatory milieu. 

3. The inchoate metabolic response to ANCA in primary monocytes drives 

epigenetic modification. Metabolites increased by ANCA stimulation such 

as fumarate, aKG, itaconate, serine and cholesterol, have been shown to 

influence innate immune cell activation and phenotype via chromatin 

modifications. The early increases in these metabolites are likely contributing 

to the inflammatory response by altering gene expression. 
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Figure 6.5.1 Summary of Metabolomic Alterations in Primary Monocytes by anti-MPO 

(A) and anti-PR3 (B) Stimulation. Monocyte activation with MPO-ANCA induces more 

profound metabolic changes than PR3-ANCA. Anti-MPO treated cells have higher glucose 

uptake than anti-PR3 and greater rates of glycolysis. This increased glycolysis feeds into 

the TCA cycle to drive FAS and fumarate/⍺-KG. These metabolites are known to induce 

epigenetic changes in monocytes and may control pro-inflammatory gene expression in 

AAV. AA synthesis is increased for both ANCAs, and intracellular Ile, Leu and Phe levels 

correlate with surface MPO expression. ⍺-KG: alpha-Ketoglutarate; AA: Amino Acid; Asp: 

Aspartic Acid; FAS: Fatty Acid Synthesis; Ile: Isoleucine; Leu: Leucine; MI: myo-Inositol; 

OXPHOS: Oxidative Phosphorylation; Phe: Phenylalanine; Ser: Serine.  
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