Show simple item record

dc.contributor.authorKELLY, JOHN MOFFAT
dc.date.accessioned2013-08-12T14:09:28Z
dc.date.available2013-08-12T14:09:28Z
dc.date.issued2012
dc.date.submitted2012en
dc.identifier.citationTuite, E.M., Rose, D.B., Ennis, P.M., Kelly, J.M., Influence of polystyrenesulfonate on electron transfer quenching of ruthenium trisbipyridine luminescence by viologens: Non-covalent assembly and covalent tethering of the ruthenium complex, Physical Chemistry Chemical Physics, 14, 10, 2012, 3681-3692en
dc.identifier.otherY
dc.identifier.urihttp://hdl.handle.net/2262/67000
dc.descriptionPUBLISHEDen
dc.description.abstractA new copolymer (RuB-PSS) of ruthenium(ii)bis-(2,2?-bipyridine)(4- vinyl 2,2?-bipyridine) and styrene sulfonate was prepared which tethers the ruthenium chromophore directly to the polymer backbone. The photophysical properties of the copolymer, and its luminescence quenching by viologens, were compared with those of ruthenium(ii)tris-bipyridine, [Ru(bpy) 3] 2+, bound non-covalently to polystyrenesulfonate (PSS) via hydrophobic and electrostatic interactions. Enhancement of ruthenium polypyridyl complex luminescence in both systems is due to decreased rates of non-radiative decay when removed from bulk water as well as reduced oxygen quenching. Molecular dynamics simulations show an open PSS chain conformation with induction of local curvature around the ruthenium centres. Hence, the complexes remain exposed to water, albeit less so than in bulk solution, as evidenced by low enhancement of bound [Ru(phen) 2dppz] 2+ emission. Quenching by O 2 is hindered for both systems due to combined polarity, ionic strength, and viscosimetric effects that influence local concentrations and diffusion of reactants. Electron transfer quenching of the Ru centre by zwitterionic propyl viologen sulfonate (PVS 0) and cationic methyl viologen (MV 2+) is enhanced for [Ru(bpy) 3] 2+/PSS, but retarded for RuB-PSS, despite the attraction of the quenchers for PSS. PSS binding hinders separation of the electron transfer products relative to aqueous solution, excepting an increase for RuB-PSS/PVS 0. We conclude that anionic hydrophobic polymers such as PSS can differentially influence forward- and reverse- electron transfer reactions depending on the charge and hydrophobicity of the reactants. In the context of small molecule binding, we find that PSS provides a tenable model for DNAen
dc.description.sponsorshipThe authors gratefully acknowledge support from EPSRC (GR/523315/01), Newcastle University (EPSRC impact funds) and COST D35 for funding and networking opportunities that made this work possible.en
dc.format.extent3681-3692en
dc.language.isoenen
dc.relation.ispartofseriesPhysical Chemistry Chemical Physics;
dc.relation.ispartofseries14;
dc.relation.ispartofseries10;
dc.rightsYen
dc.subjectnew copolymer (RuB-PSS)en
dc.subject.lcshnew copolymer (RuB-PSS)en
dc.titleInfluence of polystyrenesulfonate on electron transfer quenching of ruthenium trisbipyridine luminescence by viologens: Non-covalent assembly and covalent tethering of the ruthenium complexen
dc.typeJournal Articleen
dc.type.supercollectionscholarly_publicationsen
dc.type.supercollectionrefereed_publicationsen
dc.identifier.peoplefinderurlhttp://people.tcd.ie/jmkelly
dc.identifier.rssinternalid82578
dc.contributor.sponsorEngineering and Physical Sciences Research Council (EPSRC)en
dc.contributor.sponsorGrantNumberGR/523315/01en


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record